
Rovaniemen ammattikorkeakoulun

julkaisusarja B 12

Viet Pham Hoang

INTEGER FACTORIZATION WITH
THE GENERAL NUMBER FIELD SIEVE

Rovaniemi University of Applied Sciences

School of Technology

Degree Programme in Information Technology

Thesis

INTEGER FACTORIZATION WITH THE

GENERAL NUMBER FIELD SIEVE

Pham Hoang Viet

2008

Rovaniemi University of Applied Sciences
Publications
Jokiväylä 11 C
96300 Rovaniemi
Finland
tel. +358 20 798 4000
www.ramk.fi/julkaisutoiminta
julkaisut@ramk.fi

ISSN: 1239-7733
ISBN: 978-952-5153-77-4 (vol)
ISBN: 978-952-5153-78-1 (PDF)

Rovaniemi University of Applied Sciences Publication Serie B no. 12

c© RAMK University of Applied Sciences

Rovaniemi 2008
Tornion kirjapaino

Abstract
Since Fermat’s work on integer factorization, the mathematical commu-

nity has experienced substantial research and improvements following his
method of decomposing integers. This mathematical aspect has nowadays
been utilized in a number of applications, such as in testing the security level
of several encryption methods like the RSA algorithm. As the latest achieve-
ment, the General Number Fields Sieve (GNFS) has recently been recognized
as the fastest algorithm of this kind that is being used for factoring integers
of size up to 800 bits in length.

Considering the topic of this thesis, it concentrates on explaining the
most significant details necessary for understanding and implementing the
GNFS. In particular, it exploits the fact that this algorithm is a sieve-like
process which factors general form integers using a variety of results from the
number field theory. In this aspect, the thesis firstly addresses the underlying
principle as well as many other important concepts used for constructing
the GNFS. Then, as the implementation note moves on, several computing
techniques will be plugged in that support the transition of this algorithm
from theory into practice. In addition, the study also presents an extended
setup for the Condor distributed computing system that can be used for
parallel executions of this factorization technique. Ultimately, an extended
example given in the last chapter generally illustrates how the algorithm
works in practice by showing the data produced at every step, starting from
the input modulus and ending with the output factors.

Keywords: number field sieve, factorization, rsa, distributed computing

Contents

Foreword . 9

1 Introduction to integer factorization 11
1.1 The Public Key Infrastructure (PKI) 12
1.2 RSA cryptographic algorithm 13

1.3 Special purpose attacks to the RSA 14
1.4 The idea of integer factorization 16

2 Sieving in the General Number Field Sieve 21
2.1 Constructing the congruence of squares 22
2.2 A possibility for squares in Q(θ) 24
2.3 Sieving for rational smooth values 26
2.4 Sieving for algebraic smooth values 28

2.5 Justifying the algebraic factor base 35

3 Computing perfect squares with matrix equations 39
3.1 The shortcomings of Z[θ] . 40
3.2 The use of quadratic characters 42
3.3 Finding the perfect square . 43
3.4 The Gaussian elimination method 46
3.5 Standard Lanczos’s algorithm 48

3.6 The Block Lanczos’s algorithm 53
3.7 Constraints of Block Lanczos’s algorithm 58

4 Extracting square roots in Z 63
4.1 A modification to the algebraic context 64
4.2 Square root algorithm . 67
4.3 Computing the integral basis of O 68
4.4 Selecting good approximations for γ 74

4.5 Lattice reduction with the LLL algorithm 78
4.6 Finding square root of approximation α 84

5 Completing the sieving part 91
5.1 Generalizations of polynomial selection 92
5.2 Defining polynomial yield . 93
5.3 Selecting the best polynomial 96
5.4 Improvement to polynomial selection 100
5.5 Constructing the factor base 104
5.6 The lattice sieving technique 107

6 The GRID environment . 113
6.1 An overview of Condor’s operation 114
6.2 A projects scheduling mechanism 117
6.3 Optimizing data transmission 120

7 An empirical conclusion . 125
7.1 Initialization of the algorithm 126
7.2 Sieving and forming the matrix equation 128
7.3 Finding possible square roots 133
7.4 The development of integer factorization 136

List of Tables

7.1 Polynomials resulted from base-m method 126
7.2 Final list of optimized polynomials 127
7.3 Algebraic factor base A . 127
7.4 Rational factor base F . 128
7.5 List of log points for algebraic sieve with b = 2 129
7.6 Found pairs smooth over A and F 130
7.7 Algebraic primes in the quadratic character base 131
7.8 List of exceptional prime ideals 131
7.9 Primes to be omitted from the matrix equation 132
7.10 Sample vector representative of pairs (a, b) 132
7.11 28th dependency D in the nullspace of B 133
7.12 Table of approximations δl needed 134
7.13 Inert primes with residues of α 134

List of Figures

1.1 A visual demonstration of general PKI 12

6.1 A sample of Condor network operation 114
6.2 A network diagram for the Web environment 119
6.3 A sample set of job files . 121
6.4 A sample set of project files 122
6.5 Modified project life cycle . 123

Foreword

Originally this study is a thesis work at the Rovaniemi University of Applied
Sciences (RAMK).

The publication has many exceptional features. The author, Viet Pham
Hoang, came from a special school for mathematically oriented students in
Vietnam to Rovaniemi somewhat by accident, having seen the announcement
of our Degree Programme in Information Technology in 2004.

In the thesis, Viet shows his mathematical talent in an outstanding way.
He masters abstract algebra and number theory far beyond the level we re-
quire in our courses. He has reconstructed many of the propositions and their
proofs by himself. This did not come as a surprise, because that is what Viet
has been doing all the time during his studies.

The thesis is not only theoretical. The problem of integer factorization is
central for the safety of the public key cryptography we use every day. The
fastest method in effective use today for factorization of large integers (e.g.
RSA modulus) is the General Number Field Sieve (GNFS). In Viet’s thesis,
the history and mathematical foundation of this method are explained.

Furthermore, Viet has written a large amount of code for demonstrat-
ing the GNFS method and for distributing the computations to a computer
network (GRID). Viet not only constructed this distributed computing en-
vironment but was also responsible for the production runs that led to the
discovery of a remarkable structure of words in the field of theoretical com-
puter science.

For us it has been a great pleasure to follow the development of this
outstanding thesis.

Jouko Teeriaho Senior Lecturer, Thesis Supervisor
V eikko Keränen Principal Lecturer of Mathematics

Chapter 1

Introduction to integer
factorization

With the exception of Shor’s algorithm [29, p. 14], the General Number
Field Sieve (GNFS) is known as the fastest method for factoring large inte-
gers, as long as quantum computers are yet to be rigorously invented. Like
other modern sieving techniques such as the Quadratic Sieve and Dixon’s
algorithm, the GNFS exploits the same idea of quadratic residues to form
two independent squares, for which the Euclidean algorithm is then applied
to construct the prime factors [4, p. 10].

In addition, due to the large amount of computation required, the GNFS
was designed to support parallel computing, which further speeds up the
actual computation by the number of processors involved. As a result, vari-
ous achievements have been recorded in efforts of integer factorization, such
as the 193-digit challenge number RSA-640 in 2005 [34]. This sequence of
breakthroughs has urgently raised a question about the security level of the
RSA algorithm, a public key encryption method being used in almost every
major information system nowadays.

Before diving deeper into the complexity of the GNFS, it is important
to understand how integer factorization could be used in the cryptanalysis
of the RSA encryption method. Thus, this chapter begins by giving a brief
introduction to the operation of the RSA algorithm, after which it points out
the principle which strongly depends on the difficulty of factoring an integer.
In the end of the chapter, the Quadratic Sieve algorithm is presented as a
proof that the RSA algorithm is being seriously considered for its security
issues.

11

12 Chapter 1. Introduction to integer factorization

1.1 The Public Key Infrastructure (PKI)

The main cryptographic concern of the GNFS is in asymmetric encryption,
a methodology of securing transmission of data over the public. The cryp-
tographic idea was first initiated in 1976 which introduced the concept of
public-private key pairs [28, Chapter 2, p. 31]. In the latter stage of devel-
opment, with the burst of the World Wide Web internationally, the PKI was
designed as a solution for the security of Internet communications, especially
in the aspect of object authentication, such as human or computers.

In practice, a PKI allows remote users to explicitly identify themselves
or authenticate the others before exchanging any information. This can be
facilitated with the use of a unique certificate for each entity, or object. In
order for these certificates to be safely valid, they must be created, signed
and monitored by the so-called Certificate Authority (CA), an organization
which is recognized worldwide as a leader in the field of information security,
such as VeriSign or Geotrust. Moreover, each of the well known CAs can
act as the root of a hierarchical tree on which each node is a smaller CA
responsible for certain areas of business, but they are trusted as an employee
of the root CA. This structure divides the workload pushing on the root CA
and provides the scalability as the number of certificates grows up. [19, pp.
4-5]

Figure 1.1: A visual demonstration of general PKI

Chapter 1. Introduction to integer factorization 13

Theoretically, to assure a secured communication, Bob first queries the CA
for a certificate which can be used to authenticate Alice. Upon receiving
Alice’s certificate from the CA, Bob extracts from it a public key e that can
be used to latter facilitate the underlying asymmetric algorithm. Depending
on the nature of the algorithm indicated in the certificate, Bob invokes a
transformation E to encrypt his outgoing message M with the help of the
key e, and thus he obtains a cipher C = Ee(M).

As the original message scrambled, its content C transmitting over the
public seems to consist of random characters, which are meaningless to ev-
eryone but Alice, the owner of the private key. Indeed, knowing the en-
cryption protocol, Alice can make use of a decryption transformation D in
conjunction with his private key d to reconstruct the actual message, result-
ing M = Dd(C). [16, Chapter 8, p. 283]

Based on specific communication protocols (e.g. Secure Socket Layer, or
SSL), PKI can be applied in conjunction with other cryptographic methods
such as symmetric encryptions to form a protected and effective data trans-
mission environment. Meanwhile, its security feature relies on the difficulty
of reversing the sniffed cipher C back to its original value M , even though
attackers may be aware of the public key e as well as the two transformations
E and D. As a result, it is the design of the encryption algorithm that is
vital for the success of the PKI.

1.2 RSA cryptographic algorithm

Named after its three creators (Rivest, Shamir and Adleman), the RSA al-
gorithm was publicly released in 1977 as a strong and simple asymmetric
algorithm used in PKI applications. Moreover, this method also benefits
from an advantage of security dependency on each particular key size being
used, thus it provides the possibility of highly secured communication as long
as the key pair is maintained with acceptable length. [28, Chapter 19, pp.
466-467]

In its simplest form, the RSA operates on the basis of two randomly cho-
sen large prime integers, namely p and q. The product n of these primes,
called the RSA modulus, is expected to be very difficult for factorization back
to its factors. Meanwhile, an RSA public exponent e is chosen to be rela-
tively prime to Euler’s totient function φ(n), i.e., gcd(e, φ(n)) = 1. This con-
sequently forms the RSA private exponent d such that d · e ≡ 1 (mod φ(n)),

14 Chapter 1. Introduction to integer factorization

i.e., d · e = k · φ(n) + 1. Apparently, the public and private keys are of the
forms (e, n) and (d, p, q), respectively. [27, Chapter 3, p. 6]

Since every calculation takes place numerically, a message needing to be
encrypted must be broken into chunks of characters so that each block can
be encoded into an integer M that does not exceed the RSA modulus, i.e.,
M < n. This condition is required by the encryption transformation Ee that
produces the ciphered version C of M , where C is defined as

C = Ee(M) = Me(mod n) (1.1)

The encrypted message C is then transmitted over whatever intended
communication protocols (HTTP, SMTP, etc.) before reaching the targeting
receiver at the other end of the communication channel. Upon complete
receipt of the message, the receiver then uses a special transformation D to
decrypt the message, as given below for the case of the RSA [4, Chapter 1,
p. 2]:

Cd ≡ (Me)d ≡ Med ≡Mk·φ(n)+1 ≡ (Mφ(n))k ·M ≡M (mod n)

This decryption algorithm assumes the following proposition, which indeed is
true with the support of Euler’s theorem and the nature of the RSA modulus
n as a product of distinct primes:

Proposition 1.2.1. Let n be a positive integer of distinct prime factors, then
for every positive integer M < n it holds true that M ·(Mφ(n))k ≡M (mod n),
with k being any positive integer.

1.3 Special purpose attacks to the RSA

Like many other security mechanisms, there have been various attempts by
cryptanalysts trying to identify the weaknesses of the RSA under both gen-
eral and special circumstances. These activities even though did not make
any direct contribution to the evolvement of the algorithm, they have posed
serious considerations on how the RSA should be deployed so as to take its
full advantage and to prevent unexpected side effects.

Among those attack vectors, a method called adaptive chosen ciphertext
attack is a well known example of such popular attempts. As its name im-
plies, this attack works by selectively manipulating a ciphertext before it is
released for the decryption process. Particularly, in order to get a message
M sent by Bob, the attacker Eve needs to sniff the ciphertext C produced

Chapter 1. Introduction to integer factorization 15

by a cryptosystem ENCRYPTOR as in (1.1). To further perform the attack,
Eve first chooses a random integer R < n which he then uses to gener-
ate an altered ciphertext C̄ of C such that C̄ = C · Xe (mod n), where
X = Re (mod n). By sending C̄ to ENCRYPTOR, Eve expects to receive a
plaintext, yet meaningful message M̄ = C̄d (mod n). Using M̄ and R, the
original message M can be derived as follows[28, p. 471]:

M̄ · R−1 ≡ C̄d · R−1 ≡ Cd ·Xed ·X−1 ≡ Cd ·Xkφ(n) ≡ Cd ≡M (mod n)

Considering possible countermeasures for this security vulnerability, it
is advisable that the RSA is to be used in conjunction with other crypto-
graphic methods such as hash functions to make a presigned message. Thus,
the decrypting system would have a way to determine whether the decrypted
message is invalid, and discard it before it reaches the eavesdropper Eve.

Apart from the theoretical context, the RSA in early days can also be
compromised when it comes into implementation. As an example, the inter-
esting timing attack is primitively used to discover the private exponent d of
the RSA private key stored inside a cryptosystem. In this case, the attack
treats d as a binary number of k bits dk−1dk−2 · · ·d1d0 and assumes that the
cryptosystem makes use of successive squares as the computing mechanism
for the encryption process, based on the observation that

C ≡Md0(M2)d1(M4)d2 · · · (M2k−1

)k−1 ≡
k−1∏
i=0

M2idi (mod n)

In computing a particular bit di of the private exponent, the attacker
tries to generate a number of messages M satisfying that the computation
of Ci−1M

2i
(mod n) is extremely slow, where Ci−1 =

∏i−1
j=0 M2jdj (mod n).

Obviously, the above computation will not take place unless di is set. By ob-
serving the computation for a large number of messages, an averagely slow
response would mean that this bit is 1, otherwise it is 0. After retrieving di,
the attacker is able to compute Ci and repeat the process until the final bit
is found. [13, p. 2]

Despite the complexity of the method, it is explicitly assumed that the
attacker is aware of the entire operation of the target system. Moreover, it
is relatively easy to overcome this problem, as the system designer may just
implement a time padding scheme to reduce the differences in encrypting
time among different messages of closed length, and thus significantly affects
the prediction of the attack.

16 Chapter 1. Introduction to integer factorization

Other forms of attacks also include (but not limited to) breaking small
exponents in RSA keys [13, pp. 3-11], or exploiting misuse of the RSA
algorithm such as in common modulus attacks. However, the success of such
attacks did not imply any weaknesses in the principle of the RSA, but rather
pointed out the necessity of an appropriate implementation, and that the
RSA must be deployed in cooperation with other security measures such as
symmetric encryptions or hash functions to produce a safer environment.

1.4 The idea of integer factorization

It is obvious that the aforementioned cryptanalytic methods only exploit
specific aspects of the RSA algorithm. Most of them are feasible in theory
and can hardly be practically implemented due to the severity of their as-
sumptions. In fact, these types of attacks did not take into consideration the
security dependency that the RSA encryption relies on. Considering the case
of asymmetric encryptions in general and of the RSA specifically, the level of
security relies on how hard it is to determine the private key from the public
key. In other words, given an RSA modulus n and its corresponding public
exponent e, it should be practically impossible to compute the appropriate
private exponent d which represents the private part of the key pair.

In order to extract d, it is important to note that d · e ≡ 1 (mod φ(n)).
If the value of φ(n) is known, it is relatively straightforward to compute d
as the multiplicative inverse of e, using the extended Euclidean algorithm
[16, Chapter 2, p. 71]. The problem of finding the private key now turns
into seeking the value of the totient function φ of n, which is the product
(p− 1)(q − 1) if we consider the simplest form of the RSA modulus as p · q,
where p and q are two distinct prime numbers. Likewise, computing φ(n) re-
quires the attacker to hold the values of p and q, which can only be collected
by factoring n - the RSA modulus.

For small value of n, e.g., less than 15 digits, it is feasible to use a
bruteforce method that tries all possible prime numbers p and check if they
are divisible by n. A success will automatically indicate q, and hence reveal
the value of the private key. However, for such reason nowadays most cryp-
tosystems are using RSA keys with modulus of length 1024 bits, or approx-
imately 300 digits in decimal length. Breaking them using this bruteforce
method would require thousands of PCs running for thousands of years which
is practically impossible. In this case, it is necessary to employ a better siev-
ing technique to enormously reduce the number of prime divisions.

Chapter 1. Introduction to integer factorization 17

Following this idea, there exist several factoring methods, each of which
has achieved certain successes upon their creations in factoring n. However,
it seems that most of these methods base on the same principle that dates
back to Fermat’s time when he originally used the idea of congruence of
squares. In particular, by finding two independent integer x and y such that
x2 ≡ y2 (mod n), it is possible to construct the factors of n using gcd(x−y, n)
and gcd(x + y, n). To be more precise, it is easy to see that

x2 − y2 = (x− y)(x + y) = kn

for some integer k. Since n comprises two distinct primes p and q, it is nec-
essary that n divides either (x− y) or (x+ y), or alternatively its two factors
are equally distributed, e.g., p|(x − y) and q|(x + y). There is however a
higher probability that the latter situation would suffice, in which case the
prime factors can be collected from gcd(x− y, n) and gcd(x + y, n). [4, p. 4]

As an extensive example of factoring methods inheriting the above Fer-
mat’s idea, the Quadratic Sieve restricts the search of x and y to a rational
factor base, defined as

Definition 1.4.1. A rational factor base F of bound M is a non-empty set
of prime numbers less than M , i.e.,

F = {pi | pi ∈ Z and pi < M}

In this scenario, an integer is considered smooth over a factor base F
if all of its prime factors belong to F . As soon as a factor base F of size
k is constructed, the algorithm starts the sieving process by trying to find
another set S such that for each s ∈ S, f(s) = s2−n is smooth over F . The
sieving process terminates when v = |S| > |F |, in which case a set U ⊆ S
can be derived satisfying that

∏
si∈U

f(si) = p2m1
1 p2m2

2 · · · p2mk
k =

(
k∏

i=1

pmi
i

)2

= x2 (1.2)

In explaining the existence of U , notes that for each si ∈ S, the corresponding
f(si) can be associated with a k-dimension vector {e1,i, e2,i, . . . , ek,i} due to
the structure of its value:

f(s) = p
e1,i

1 p
e2,i

2 · · · pek,i

k

18 Chapter 1. Introduction to integer factorization

Likewise, the above subset U can be found by solving the following system
of equations: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
t1e1,1 + t2e1,2 + · · ·+ tve1,v = 0 (mod 2)
t1e2,1 + t2e2,2 + · · ·+ tve2,v = 0 (mod 2)

...
t1ek,1 + t2ek,2 + · · ·+ tvek,v = 0 (mod 2)

(1.3)

Since v = |S| > |F | = k, it is guaranteed that (1.3) can be solved to get a
non-trivial solution of the form {t1, t2, . . . , tv}. Moreover, the value of each
ti can either be 1 or 0 which in turn indicates whether si should or should
not belong to U , respectively.

Meanwhile, the original assumption on f(s) also implies that s2 ≡ f(s) (mod n)
which leads to the value of y as

y2 =
∏
si∈U

s2
i (1.4)

The combination of (1.2) and (1.4) results in the congruence of squares:

x2 =
∏
si∈U

f(si) ≡
∏
si∈U

s2
i = y2 (mod n)

Considering a practical implementation, in order to solve (1.3) one would
employ the Gaussian elimination method if k and v are small. Otherwise,
the block Lanczos’s algorithm can be used as a better technique in terms of
performance, and it indeed does not take the majority of the total running
time. On the contrary, the sieving step in the Quadratic Sieve seems to take
most of the time as it is directly affected by the size of n. As such, a trivial
sieving technique is to search for s within a large interval [−B, B] and divides
f(s) by each element in F . If the value of f(s) finally arrives 1, the original
f(s) can be added to the set of smooth values. Despite its parallel feature
in computing, this method still requires a lot of computations when B is large.

On the other hand, instead of trying to divide f(s) by a prime p for every
s in [−B, B], one could alternatively fix each p in F and find an integer
s ∈ [−B, B] such that f(s) ≡ 0 (mod p). Due to the assumed structure
of f(s), the problem turns into finding the square root of n modulo p since
s2 − n ≡ 0 (mod p), or equivalently s2 ≡ n (mod p). Once an instance of s
has been found, all other square roots of n modulo p can only be of the form

Chapter 1. Introduction to integer factorization 19

s + kp for some integer k, as shown below:

f(s+kq) = (s+kp)2−n = s2+2skp+k2p2−n = f(s)+p(2sk+k2p) ≡ 0 (mod p)
(1.5)

This method thus allow the algorithm to eliminate most failed trial divisions.
Of crucial importance concerning this technique, n must be the quadratic
residue modulo each element of F . Indeed, each p of the rational factor base
can be chosen such that n(p−1)/2 ≡ 1 (mod p), according to Euler’s quadratic
residue theorem [32, Chapter 6, p. 189]. In addition, as for the problem of
finding a square root of n that generates others, it can be computed using the
Shanks Tonelli algorithm. Eventually, the combination of these techniques
has led to a significant success of the Quadratic Sieve in the past two decades,
with the best being the factorization of an RSA challenge number of length
129 digits [10].

To be honest, much of the Quadratic Sieve is derived from its predeces-
sor called Dixon’s algorithm. The only difference in principle between these
two generations are the forms of polynomials in use. Particularly, Dixon’s
algorithm uses f(x) = x2 (mod n), which makes it feasible to produce the
congruence of squares as inherited by the method described in the Quadratic
Sieve [4, p. 4]. Due to this designation, even though an instance of s may
be determined such that f(s) is divisible by some prime p in the factor base
F , there is no such way in Dixon’s algorithm to infer other values without
having to perform trial divisions. This is probably the main reason for the
lack of success associated with Dixon’s algorithm. As shown above, the ma-
jor improvement in the Quadratic Sieve appears at the sieving step with a
remarkable time reduction.

However, concerning the best record mentioned, its broken modulus was
not of large enough value to threaten the security of the RSA, since it is
much less than the square root of what today’s cryptosystem would use
as the modulus of choice. Thus, a quest for a new method, particularly
on the sieving technique is necessary before declaring the end of the RSA
encryption. One of the primitive thought was to consider reducing the size
of f(s) to increase the probability that it would be smooth over the factor
base F . Such observation later on led to the creation of the Number Field
Sieve which indeed has significantly exploited this idea.

Chapter 2

Sieving in the General Number
Field Sieve

In the previous section, the Quadratic Sieve was introduced as a standout
success in the field of integer factorization. Being developed from Dixon’s
algorithm, it has overcome the performance issue in sieving techniques by
using a different form of polynomial which however has the same effect in
producing the congruence of squares.

Apart from its achievements, the Quadratic Sieve did not seem to make
any significant adjustment in the size of f(x). In the case of Dixon’s al-
gorithm, it is clear that the value of f(x) is concealed from 0 to n, with a
suggestion that x > �√n �. Similarly, this interval in the Quadratic Sieve is
of the same absolute size except that it starts from −n to 0. For n of size 50
decimal digits or larger, one has to find f(s) of randomly close length which
are smooth over a factor base whose elements are comparatively trivial. Such
smoothness in practice appears with a relatively low probability. One way to
increase this likelihood is to enlarge the factor base, but then more smooth
values are needed for the cardinality to exceed |F |, which again yields a con-
tradiction in terms of performance.

As there is almost no other improvement in sieving over the ring of inte-
gers Z and Z/pZ, it is worth to try forming a square using a sieving technique
over other algebraic structures and map it back to the corresponding integer
square. In developing this idea, it may be necessary to devise other means of
representing polynomial values and “prime numbers” as well as the division
operation and a sieving method over a special algebraic structure. In the
meantime, another trend would be to consider using polynomials of degree
other than 2. Embracing these suggestions, the GNFS becomes isolated from

21

22 Chapter 2. Sieving in the General Number Field Sieve

the simplicity introduced by any other factoring methods previously created,
with the use of rings involving complex numbers.

2.1 Constructing the congruence of squares

Recall that in the Quadratic Sieve, one square is produced using the prod-
uct of f(x) = x2 − n for some integers x ∈ U , whereas the other square is
computed as the square of the product of all elements in U . This makes the
algorithm itself fairly simple and straightforward in implementation since the
mathematical context is restricted within the ring of integers Z. As for the
GNFS, the integer s used to form y2 is replaced by a structure a + bm for
some fixed integer m that increases the flexibility for the sieving step with
two variables a and b.

In general, the GNFS performs the difference in squares by using the
following ring[26, p. 238], provided that the modulus n to be factored is
identified:

Definition 2.1.1. Let f(x) = xd + c1x
d−1 + · · ·+ cd−1x+ cd be a monic, irre-

ducible∗ polynomial with integer coefficients such that there exists m ∈ Z/nZ
for which n divides f(m), i.e., f(m) ≡ 0 (mod n). Considering an arbi-
trarily complex root θ of f(x), the following polynomial ring Z[θ] is defined
as

Z[θ] =
{
kd−1θ

d−1 + kd−2θ
d−2 + · · ·+ k1θ + k0 | {ki} ⊂ Z

}

In order to verify the availability of this definition, the “Fundamental
theorem of algebra”[26, p. 473] states that for each polynomial f(x) of degree
d, there exist exactly d complex roots θi such that

f(x) = (x− θ1)(x− θ2) · · · (x− θd) =

d∏
i=1

(x− θi) (2.1)

As the underlying principle is to perform a sieving step over Z[θ] and hence
get a perfect square β2 ∈ Z[θ] , it is necessary to define a mechanism that
converts this square from Z[θ] back to its corresponding integer square. This
mapping can indeed be explicitly defined as

∗f(x) ∈ Z[θ] is monic if its coefficient of highest order is 1. f(x) is irreducible if
f(x) = g(x)h(x) implies either g(x) = c or h(x) = c for some c ∈ Z and g(x), h(x) ∈ Z[θ].

Chapter 2. Sieving in the General Number Field Sieve 23

Proposition 2.1.1. Let f(x) be a monic, irreducible polynomial with inte-
ger coefficients and m ∈ Zn satisfying f(m) ≡ 0 (mod n). There exists a
surjective ring homomorphism† φ : Z[θ] → Z/nZ that maps polynomials in
θ from Z[θ] to appropriate polynomials in m over Z/nZ.

Proof. The mapping φ can be defined such that φ(1) = 1 (mod n) and
φ(θ) = m (mod n). Such construction implies that for every polynomial
f(m) over Z/nZ, there exists a polynomial f(θ) created by substituting m
to θ satisfying that φ(f(θ)) = f(m) (mod n), thus making the mapping sur-
jective. Moreover, for a =

∑d−1
i=0 aiθ

i and b =
∑d−1

i=0 biθ
i in Z[θ] the following

binary operations using conventional polynomial multiplication and addition
are clearly defined:

φ (ab) = φ

((
d−1∑
i=0

aiθ
i

)(
d−1∑
i=0

biθ
i

))
= φ

(
2d−2∑
i=0

(
i∑

j=0

ajbi−j

)
θi

)
‡

=
2d−2∑
i=0

(
i∑

j=0

ajbi−j

)
mi =

(
d−1∑
i=0

aim
i

)(
d∑

i=0

bim
i

)
(mod n)

= φ

(
d−1∑
i=0

aiθ
i

)
φ

(
d∑

i=0

biθ
i

)
= φ (a) φ (b)

φ (a + b) = φ

((
d−1∑
i=0

aiθ
i

)
+

(
d−1∑
i=0

biθ
i

))
= φ

(
d−1∑
i=0

(ai + bi) θi

)

=
d−1∑
i=0

(ai + bi) mi =

(
d−1∑
i=0

aim
i

)
+

(
d∑

i=0

bim
i

)
(mod n)

= φ

(
d−1∑
i=0

aiθ
i

)
+ φ

(
d∑

i=0

biθ
i

)
= φ (a) + φ (b)

Assume that after the sieving step and some further refinements, a set U
of pairs (a, b) similar to that in §1.4, along with an algebraic integer § β ∈ Z[θ]
and y ∈ Z have been found such that

β2 =
∏

(a,b)∈U

(a + bθ) and y2 =
∏

(a,b)∈U

(a + bm) (2.2)

†A surjective ring homomorphism φ : A → B is a mapping from the ring A to the ring
B such that φ is surjective and φ(a · b) = φ(a)φ(b) for a, b ∈ A.

‡See [26, p. 237] for details
§See the next section for the explicit definition

24 Chapter 2. Sieving in the General Number Field Sieve

By letting x = φ (β) ∈ Z/nZ, one could easily produce the congruence of
squares as follows:

x2 = x · x = φ (β)φ (β) = φ (β · β) = φ
(
β2
)

= φ

⎛
⎝ ∏

(a,b)∈U

(a + bθ)

⎞
⎠ (2.3)

≡
∏

(a,b)∈U

(a + bm) ≡ y2 (mod n)

After x and y have been computed, the remaining task is to check whether
gcd(x − y, n) and gcd(x + y, n) give non-trivial factors other than n and 1,
with the probability of 2/3, i.e., approximately 66.67%. If trivial factors
occur, an iteration of the whole sieving process needs to be restarted again
until the prime factors p and q are found.

2.2 A possibility for squares in Q(θ)

One of the most important considerations in the GNFS is the construction
of the algebraic square β2 in the polynomial ring Z[θ]. Note that since Z[θ]
uses conventional polynomial binary multiplication and addition, it is also
a commutative ring, i.e., a · b = b · a for a, b ∈ Z[θ]. Moreover, it is clear
that in this case 1 and 0 can be considered as the multiplicative and additive
identities, respectively. As the ring of integers Z is sufficiently an integral
domain, it follows along the lines of [26, Lemma 3.24] that ab = 0 implies
either a = 0 or b = 0 for a, b ∈ Z[θ]. Thus Z[θ] is as well an integral domain.
As a result, an important field containing Z[θ] can be defined as follows:

Proposition 2.2.1. Let θ be a complex root of a monic, irreducible polyno-
mial f(x) with rational coefficients. Let Z[θ] be the polynomial ring of θ over
Z. The polynomial ring of θ over Q, denoted as Q(θ), is the field of fraction
of Z[θ].

Proof. Since Z[θ] is a subring of Q(θ), it follows similarly from the above
explanation that Q(θ) is also an integral domain. Furthermore, since f(x) is
irreducible, then gcd(f(x), g(x)) = 1 for every g(x) ∈ Q[x] \ {f(x)}. Using
the Euclidean extended algorithm as given in [26, Theorem 3.71], there exist
h(x), t(x) ∈ Q[x] such that

f(x)h(x) + g(x)t(x) = 1 (2.4)

Chapter 2. Sieving in the General Number Field Sieve 25

In (2.4) one could substitute x by θ to get g(θ)t(θ) = 1 by the assumption.
In other words, t(θ) is the inverse polynomial of g(θ), denoted as g−1(θ), such
that g(θ)g−1(θ) = g−1(θ)g(θ) = 1. This lets Q(θ) to be qualified as a field.

On the other hand, without loss of generality, one could assume that g(θ)

is of the form
∑d−1

i=0

(
ai

bi
θd
)

where d is the degree of f(x) and ai, bi ∈ Z. By

converting each fractional coefficient in g(θ) to common denominator, i.e.,∏d−1
i=0 bi, g(θ) can now be represented in the form

g(θ) =
1∏d−1

i=0 bi

d−1∑
i=0

(
θiai

d−1∏
j �=i,j=0

bi

)

In other words, g(θ) can be factorized into the product a−1b for a, b ∈ Z[θ].
This makes Q(θ) completely a field of fraction of Z[θ], as can be seen in [26,
Theorem 3.21].

While the actual sieving step may not take place in Q(θ), the existence
of such field is important as it gives rise to the following concept which is
crucial for the operation of the GNFS:

Definition 2.2.1. An algebraic integer is a complex root of a monic, irre-
ducible polynomial with integer coefficients. The set of all possible algebraic
integers γ ∈ Q(θ) is called the ring of algebraic integers, denoted as O.

Thus, if a perfect square β2 is found such that β ∈ O, then β2 ·f ′(θ)2 also
forms a square in Z[θ] since β · f ′(θ) ∈ Z[θ]. Likewise, with x = φ(β · f ′(θ)),
the manipulation in (2.3) can now be altered to

x2 = x · x = φ (β · f ′(θ)) φ (β · f ′(θ)) = φ
(
β2 · f ′(θ)2

)
= φ

⎛
⎝f ′(θ)2

∏
(a,b)∈U

(a + bθ)

⎞
⎠

≡ f ′(m)2
∏

(a,b)∈U

(a + bm) ≡ y2 (mod n)

Simply state, this observation implies that it is possible to apply a similar
idea as in §2.1, but to find smooth values and a perfect square in O rather
than in Z[θ]. At the same time, it is also clear that there is a higher proba-
bility for an algebraic integer α to be smooth over a fixed factor base A if it
belongs to O rather than Z[θ], since its coefficients can be of rational form
rather than integers. However in practice, this improvement of replacing

26 Chapter 2. Sieving in the General Number Field Sieve

Z[θ] by O is not well established as it adds more overheads with the use of
rational arithmetic. Unfortunately, as §2.5 and §3.1 show, the main sieving
technique of the GNFS is only correct when it is applied in O, whereas in
Z[θ] the theory is not always true. As shown in §3.2, this problem later on
causes a necessity for a compensation to make sure that the sieve can still
be implemented in Z[θ] without failure.

2.3 Sieving for rational smooth values

In preparing for the sieving process, it is necessary to create the rational
factor base F which contains prime numbers of bound M as in §1.4, except
that in this case there is no restriction in choosing those prime candidates.
After F has been constructed, one could start the sieving process by trying
to divide by each p ∈ F all values of the form (a + bm) for a, b ∈ Z and m
already chosen with the monic, irreducible polynomial f(x) as in Definition
2.1.1. In the end, only those pairs (a, b) for which the remaining quotients
arrived at ±1 are selected as they are completely smooth over F .

Considering the selection of a and b, it is crucial that gcd(a, b) = 1.
Otherwise, the sum a + bm must be of the form gcd(a, b)(a0 + b0m). This
phenomenon also appears in the same way with the corresponding alge-
braic integer a + bθ, i.e., a + bθ = gcd(a, b)(a0 + b0θ). Furthermore, if
(a, b) produces a completely smooth value, then so does (a0, b0), and in
case they are chosen as candidates for the set U that forms the perfect
squares, their product would create a smaller congruence of squares, e.g.,
φ((a0 + b0θ)

2) ≡ (a0 + b0m)2 (mod n) which is redundant since it does not
improve the probability that the containing congruence of squares would
produce a non-trivial factor of n. Thus, it is necessary to prevent this redun-
dancy from scratch by requiring all smooth candidates of the form (a, b) to
satisfy that gcd(a, b) = 1.

Moreover, in order to support parallel computing, it is recommended to
fix b to some small integer due to the fact that bm is of significant value
when the modulus n is large. After that, a bound R can be chosen so that
[−R, R] gives an acceptable interval for a. Then, for each a in [−R, R], a
value of a + bm is checked if it is smooth by trial divisions to every prime
p ∈ F . In practice, instead of checking the smoothness for each a + bm all
at once, a better method is to perform trial divisions for all a + bm by each
prime p before moving to the other prime in F . Note that using the latter
mechanism, an improvement for the sieve can be devised similar to that in

Chapter 2. Sieving in the General Number Field Sieve 27

(1.5). Indeed, for each p ∈ F it is only required to find a value a0 in [−R, R]
such that a0 + bm ≡ 0 (mod p). All other values of a in [−R, R] such that
p|a + bm are then concealed to the form a0 + kp for k ∈ Z. Thus, regardless
of the size of R, only one trial division is needed for each prime in F , making
the total number of trials is |F |.

On the other hand, in order to produce a list of ±1 in the end of the
sieving process, each t = a + bm divisible by some prime p must be updated
with t/p. In the sieving step, these updates create a large amount of divi-
sions, which remarkably decrease the overall performance. A suggestion is to
somehow switch the operation from division to subtraction since the latter
is much faster in practical computing. This leads to the idea of using the
natural logarithm as a representative for both a + bm and p. A division of
a + bm by p would simply mean a subtraction of ln(a + bm) by ln(p). Thus,
given a fixed b ∈ Z+, a prime p ∈ F , and the smallest a0 in [−R, R] such
that a0 + bm ≡ 0 (mod p), it is relatively straightforward to form the sieving
process, as given in Algorithm 2.3.1.

Algorithm 2.3.1: RationalSieve

Input: b, R, a0

begin1

for a← −R to R do log[a]← ln(a + bm);2

count ← (a0 + bm)/p;3

k ← a0;4

while k < R do5

log[k] ← log[k]− ln(p);6

e ← 0;7

while pe+1|count do e ← e + 1;8

log[k] ← log[k]− e · ln(p);9

k ← k + p;10

count ← count + 1;11

endw12

result ← {};13

for a← −R to R do14

if log[a] < 0.69 then result← result ∪ (a, b);15

endfor16

� Return result;17

end18

28 Chapter 2. Sieving in the General Number Field Sieve

This algorithm in practice also covers situations in which a+ bm contains
pk as one of its factors. In such cases, the variable e in Algorithm 2.3.1
is computed as the exponent k of p in the factorization of a + bm. Thus,
ln(a + bm) can safely be subtracted with e · ln(p) as shown above. In fact,
this method is in contrast with the one explained in [4, p. 25] that spon-
taneously ignores the exponent k of p using some fudged factors. Moreover,
an improvement in [14, Section 4.2, pp. 26-27] suggests that the subtraction
could be further replaced by the addition, for which the log list is initialized
with 0 and added by ln(p) every time p|(a + bm).

Finally, each element in the log list in correspondence with a + bm is
considered smooth and selected if its value is 0 (or ln(a + bm) when the
additive variation is used), since ln(1) = 0. In programming practice, as
there is no way to get the exact value of the natural logarithm, it is necessary
to allow errors in the final selection, that is, if log[ai] < 0.7 = ln(2), the
corresponding ai+bm is smooth even though log[ai] is not exactly 0 due to the
approximity of computations. Note also that it is not necessary to compute
ln(a + bm) many times since the value of a is almost trivial compared to bm
and hence ln(a + bm) ≈ ln(bm). Thus, one would only need to generate the
log array with ln(bm) and still be able to grasp all the smooth values.

2.4 Sieving for algebraic smooth values

As the main difference to other types of sieving methods, the GNFS besides
a traditional sieve over Z/nZ also operates a parallel search for smooth val-
ues over an algebraic structure, that is, the ring Z[θ] of polynomials in θ
with integer coefficients. As a result, this is the most difficult part both to
construct the theoretical background and to implement it, since there exists
no explicit way of representing this ring in a computer system. A solution
for this problem is to find a mapping that converts the theoretical ideas from
smooth values, primes, and operators to their unique representatives in Z/nZ
so as to enable a fruitful deployment using computer programming.

As the first step, according to (2.1), the following result defines several
monomorphisms which map the field of fraction Q(θ) to the set of complex
number C:

Proposition 2.4.1. Given a monic, irreducible polynomial f(x) of degree d
with integer coefficients and a root θ ∈ C, there exist exactly d ring monomor-
phisms, namely σi : Q(θ) → C such that σi(1) = 1 and σi(θ) = θi for some

Chapter 2. Sieving in the General Number Field Sieve 29

root θi ∈ C of f(x). Moreover, each α ∈ Q(θ) has d conjugates including
itself, defined in turn as σi(α).

While this proposition can be verified in [30, Theorem 1.8, p.23], such
conjugates give rise for the definition of an important mapping that partially
satisfies our needs:

Proposition 2.4.2. Let f(x) be a monic, irreducible polynomial of degree
d with integer coefficients and Q(θ) be the corresponding field of polynomial
with rational coefficients in θ, a complex root of f(x). For each algebraic
integer α ∈ Q(θ), the product of its conjugates, namely the Norm of α,
denoted as N(α), is an integer in Z.

Proof. The proof may begin with a proof that the following field polynomial
of α has integer coefficients:

fα(x) =

d∏
i=1

(x− σi(α)) (2.5)

Indeed, it can easily be seen from [1, Theorem 4.3.4, pp. 153-154] that there
exists a monic, irreducible polynomial g(x) ∈ Q[x] of least degree k such that
g(α) = 0. In this case g(x) is called the minimal polynomial of α. Moreover,
since α is an algebraic integer, it follows that there also exists a polynomial
t(x) ∈ Z[x] ⊂ Q[x] with integer coefficients such that t(α) = 0.

Using the division algorithm t(x) can be analyzed as g(x) · h(x) + r(x)
where deg(r) < deg(g). Thus, the assumption g(α) = t(α) = 0 implies that
r(α) = 0, and hence r(x) = 0, otherwise it would contradict with the find-
ing that g(x) is the minimal polynomial. This means that g(x)|t(x), and
since t(x) ∈ Z[x], a result in [30, Lemma 1.4, pp. 19-20] shows that even
if g(x) ∈ Q[x], it can be turned into a minimal polynomial G(x) in Z[x] by
multiplying with a scalar λ ∈ Q.

Meanwhile, it is important to note that fα(α) = 0 since there exists
1 ≤ i ≤ d such that σi(θ) = θ, which makes a factor of fα(x) becomes (x−α).
Thus, the result from [30, Theorem 2.5(a), p. 43] shows that fα(x) ∈ Z[x] as
it is a power of G(x) ∈ Z[x] described above.

Moving a step further, based on the definition of N(α) =
∏d

i=1 σi(α), the
formula of fα(x) in (2.5) can be expanded to

fα(x) = ad−1x
d−1 + ad−2x

d−2 + · · ·+ a1x + a0

30 Chapter 2. Sieving in the General Number Field Sieve

where a0 = (−1)dN(α)− k0 for some k0 ∈ Z as the coefficient of the lowest
order of f(x). Thus, it turns out that N(α) ∈ Z.

In the case of a + bθ ∈ Q(θ), the norm from Proposition 2.4.2 can be
further justified [4, p. 19] as

N(a + bθ) =

d∏
i=1

σi(a + bθ) =

d∏
i=1

(a + bθi)

=

d∏
i=1

(−b)
(
−a

b
− θi

)
= (−b)d

d∏
i=1

(
−a

b
− θi

)
(2.6)

= (−b)df
(
−a

b

)
which can be used to check whether a+ bθ is smooth over an algebraic factor
base A. In fact, the value of the norm function can be used as a representa-
tive for each algebraic integer a+ bθ, and furthermore its value can be sieved
over a set of prime integers to resemble the process of sieving a+bθ over some
algebraic primes p ∈ Z[θ]. While the underlying principles of this analogy
are explained and proven in the next section, the consideration on how to
practically implement the sieve is what concentrated the most in this section.

That being said, each (a+ bθ) can be partially checked for its smoothness
by dividing N(a + bθ) to some primes p in another rational factor base A1

which is the representative of the algebraic factor base A. As a result, the
simplest method is to first compute the value of N(a + bθ) and perform the
trial divisions by each p ∈ A1. In the initial stage, this would be painful
concerning the complexity since N(a + bθ) is of polynomial form, and the
number of such trial divisions could be expanded to billions if the modulus
n is large enough.

Therefore, it is necessary to devise a method that determines how to sieve
N(a+bθ) over some prime p in a more reasonable manner. Fortunately, such
method is relatively straightforward, as shown in the following result [14, p.
58]:

Proposition 2.4.3. Given a monic, irreducible polynomial f(x) with integer
coefficients and one of its roots θ ∈ C, the norm function of a+bθ ∈ Z[θ] is di-
visible by some prime p if there exists an integer r such that a ≡ −br (mod p)
and f(r) ≡ 0 (mod p). In general, the exponent of p as a factor of N(a+ bθ)
can be summarized as

ep,r(a + bθ) =

{
ordp(N(a + bθ)) if a ≡ −br (mod p)
0 otherwise

(2.7)

Chapter 2. Sieving in the General Number Field Sieve 31

where ordp(k) is the number of factors p in k.

Proof. By the definition of N(a + bθ) it is obvious that (−b)df(−a/b) ≡
0 (mod p) in case p|N(a + bθ). This logically implies either p|(−b)d or
p|f(−a/b). Suppose the former holds, i.e., p|b, and that N(a + bθ) is ex-
pressed as follows:

N(a + bθ) = (−b)df

(−a

b

)

= (−b)d

((−a

b

)d

+ kd−1

(−a

b

)d−1

+ · · ·+ k1

(−a

b

)
+ k0

)

= ad − kd−1ba
d−1 + kd−2b

2ad−2 + · · ·+ k1(−b)d−1a + k0(−b)d

This shows that besides other terms of N(a + bθ) which contain b as factors
and hence are divisible by p, the first term ad must also be divisible by
p, which means p|a and gcd(a, b) ≥ p > 1. However, note that for a reason
described in §2.3 only those pairs (a, b) for which gcd(a, b) = 1 are used. This
contradiction implies p � b and f(−a/b) ≡ 0 (mod p). Thus, if p|N(a + bθ),
there must exists an integer r such that f(−a/b) ≡ f(r) ≡ 0 (mod p), i.e.,
−a/b ≡ r (mod p) or conveniently a ≡ −br (mod p). This fact is true as
long as f(x) ≡ f(y) (mod p) implies x ≡ y (mod p).

According to this result, since the value of r is independent of a and b,
it is necessary that for each prime p in the factor base A1, a set Rp con-
taining r such that f(r) ≡ 0 (mod p) should be pre-generated from the very
beginning of the sieving step so that (a, b) could be test for the divisibility
of N(a + bθ) by p without having to compute f(−a/b). In fact, as will be
shown in the next section, each pair (p, r) computed for this convenience
is actually a unique representative of a special prime in Z[θ]. This further
explains why the above divisions and sieving idea in Z are valid for checking
the smoothness in Z[θ].

Meanwhile, Proposition 2.4.3 also allows the sieving of algebraic integers
to be devised in a similar manner as that for rational smooth values. Indeed,
given a fix value of b and a prime (p, r), it is sufficient to find a0 such that
a0 ≡ −br (mod p). By using a0, all other values of a such that p|N(a + bθ)
will come under the form a0 + kp for some k ∈ Z.

Likewise, as in the rational sieve, a problem arises concerning the sit-
uation in which N(a + bθ) is divisible by the power pk for some k ∈ Z+.
Unfortunately, the above idea does not give a solution to identify how many

32 Chapter 2. Sieving in the General Number Field Sieve

times N(a + bθ) should be divided by p rather than performing trial divi-
sions. Due to the wide range of a, this problem not only forces N(a + bθ)
to be computed but also produces a significant amount of waste divisions.
Otherwise, If these exponents are eventually ignored, many smooth values
yet remarkable would be overlooked. However, as the following result shows,
such indications can be achieved without much computing efforts:

Proposition 2.4.4. Let f(x) be a monic, irreducible polynomial with integer
coefficients {ki} and a root θ ∈ Z. Given a prime p and an algebraic integer
a + bθ ∈ Z[θ], the value of the following expression is independent of k:

N [(a + (k + 1)pm) + bθ]−N [(a + kpm) + bθ] (mod pm+1) (2.8)

for some arbitrary k ∈ Z and m ∈ Z+.

Proof. In order to simplify the idea behind, the two norm functions can be
expanded to the following sums:

N1 = N [(a + (k + 1)pm) + bθ]

= (−b)df

(
a + (k + 1)pm

−b

)

= (−b)d
d∑

i=0

ki

(
a + (k + 1)pm

−b

)i

=
d∑

i=0

ki(−b)d−i(a + (k + 1)pm)i (2.9)

N2 = N [(a + kpm) + bθ]

= (−b)df

(
a + kpm

−b

)

= (−b)d

d∑
i=0

ki

(
a + kpm

−b

)i

=
d∑

i=0

ki(−b)d−i(a + kpm)i (2.10)

Note that each term of the sums in (2.9) and (2.10) differ by at most pm.
Therefore, their differences modulo pm+1 would be simplified as follows:

Chapter 2. Sieving in the General Number Field Sieve 33

N1 −N2 =

d∑
i=0

ki(−b)d−i(a + (k + 1)pm)i −
d∑

i=0

ki(−b)d−i(a + kpm)i (mod pm+1)

=

d∑
i=1

(
ki(−b)d−ipm

i−1∑
j=0

(a + (k + 1)pm)j(a + kpm)d−j−1

)
(mod pm+1)

= pm
d∑

i=1

(
ki(−b)d−i

i−1∑
j=0

ajad−j−1

)
(mod pm+1)¶

= pm
d∑

i=1

(
ki(−b)d−1iai−1

)
(mod pm+1)

Simply state, Proposition 2.4.4 indicates that if the remainder δ0 of N(α)
and δ1 of N(α + pm) are known modulo pm+1, then it is easy to find the
remainder of N(α + kpm) (mod pm+1) as δ1 + k(δ2 − δ1) without having to
compute N(α+kpm) and try to divide it by pm+1. In this case, such common
distance δ2−δ1 between the two remainders can be called the remainder unit
with regard to the exponent m + 1 of the modulus.

As the remaining obstacle for this sieving technique, it is important that
initial values for entries in the log array need to be generated by the same
meaning as in Algorithm 2.3.1. Recall that in the previous section, this array
could be initialized with a single value of ln(bm) since a plays a subtle role in
the computation of the natural logarithm. Unfortunately, this does not hold
for the norm of a+ bθ which varies significantly for each a. A solution in this
case is to approximately solve the equation N ′(a+ bθ) = 0 to locate the crit-
ical points on the graph of N(a + bθ). By computing the natural logarithm
at each of such point as well as the beginning and ending of the interval,
one could approximate the value of ln(N(a + bθ)) to a certain extent. Even
though the computing technique behind this idea is out of concern, it should
make no difficulties to solve such equations, especially when using software
such as Mathematica.

Given a fixed value of b, a prime pair (p, r) and the sieving interval [A, B],
after the log array has been initialized, it is ready to begin the sieve by p, as

¶Since the sum is multiplied by pm, all of its inner terms whose values contain p are
canceled.

34 Chapter 2. Sieving in the General Number Field Sieve

illustrated in Algorithm 2.4.1.

Algorithm 2.4.1: AlgebraicSieve

Input: b, p, r, A, B, initialized logarithm list log[]
Output: List of pairs (a, b) smooth over prime (p, r)
begin1

a ← p((−br + A)÷ p);2

� Initialize unit[] to 0;3

� Initialize Remainder[] to 0;4

while a < B do5

e ← 0;6

while Remainder[e] = 0 do7

e ← e + 1;8

if unit[e] = 0 then9

unit[e] ← N(a + pe + bθ)−N(a + bθ) (mod pe+1);10

Remainder[e] ← N(a + bθ) (mod pe+1);11

else12

Remainder[e] ← Remainder[e] + unit[e] (mod pe+1);13

endif14

endw15

log[a] ← log[a]− e · ln(p);16

a ← a + p;17

endw18

result← {};19

for a ← A to B do20

if log[a] < ln(2) then result← result ∪ (a, b);21

endfor22

� Return result;23

end24

As an important note, the array unit in the above algorithm acts as the
indicator for the remainder distances discussed previously. In fact, once a
unit has been computed, say unit[2] for example, it is no more required
to compute N(a + bθ) (mod p3), whereas this value can still be found by
simply adding unit[2] to the remainder δ from the previous iteration, i.e.,
δ = N(a − p2 + bθ) (mod p3). Therefore, the array Remainder is created
to hold these previous remainders modulo each pe. Thus, assume that the
whole sieving process employs b within an interval [B1, B2], the total number
of norm computations would be effectively concealed within (B2 −B1)#A1,

Chapter 2. Sieving in the General Number Field Sieve 35

where A1 is the set of pairs (p, r) that represent algebraic primes in Z[θ].

2.5 Justifying the algebraic factor base

In the previous section, the idea of smoothness of an algebraic integer (a +
bθ) ∈ Z[θ] is introduced by using a norm mapping that converts a + bθ into
an integer. This integer is then checked for smoothness in a similar manner
as in rational sieving. However, the idea of mapping primes from Z[θ] to a
prime integer has not been clarified explicitly except the use of a prime pair
(p, r). Indeed, the definition of the norm function does not reveal a way on
how a prime in Z[θ] would look like when it is mapped into Z, i.e., whether
their norm values are really primes in Z.

Alternatively, the actual idea in this mapping technique is to use an-
other algebraic structure which shares the same application of the norm
function, but it moreover provides a mean of identifying the relationship be-
tween primes in Z[θ] and Z. In practice, when constructing the mapping
into A1 in the previous section form the algebraic factor base A ⊂ Z[θ], it is
important to mention the following concept:

Definition 2.5.1. Given a commutative ring R, an ideal I of R is a subset of
R such that xr, x + y ∈ I for every x, y ∈ I and r ∈ R. If I can be generated
from a single element a ∈ R, then I is called a principal ideal, denoted as
〈a〉. Moreover, if I is a proper ideal of R and ab ∈ I implies either a ∈ I or
b ∈ I, then I is a prime ideal. Of crucial importance, the binary operations
for any two ideals I and J can be defined as follows:

I + J = {a + b|a ∈ I and b ∈ J}

I · J =

{
k∑

i=0

aibi|ai ∈ I and bi ∈ J and k ∈ Z

}

For safety reason, in this case the ring O will be used instead of Z[θ] as
the context to explain the idea of prime and factorization of algebraic inte-
gers. This is because Z[θ] is not fully qualified for such operation as briefly
noted in the previous section. However, as will be shown in the next chap-
ter, a method to compensate the lack of features in Z[θ] can heuristically be
overcome by using quadric characters which help in securing the mapping of
an unknownly claimed perfect square from Z[θ] to an integer square in Z.

To begin the discussion, the most important characteristic of O can be
concluded in the following result:

36 Chapter 2. Sieving in the General Number Field Sieve

Proposition 2.5.1. Given a monic, irreducible polynomial f(x) with integer
coefficients and a root θ ∈ C, every ideal of the ring O of algebraic integers
in Q(θ) are principal. In addition, each non-zero ideal 〈α〉 in O can uniquely
factors into a product of prime ideals pi ⊂ O, that is,

〈α〉 =
k∏

i=0

pei
i (2.11)

for some k, ei ∈ Z+.

Due to the above properties, the ring O is called both as a principal
ideal domain (PID) and a unique factorization domain (UFD). In fact, a
domain once proved to be a PID automatically implies itself to be a UFD
[26, Theorem 7.16, p. 528]. Following this condition, a similar concept of
norm can be defined for ideals of O, whether or not they are prime:

Proposition 2.5.2. Let the norm of an ideal I of a ring R, denoted as N(I),
be the size of the corresponding quotient ring R/I. If I is a prime ideal,
then there exists a prime p and a positive integer k such that N(I) = pk.
Otherwise, if R is a UFD, then for each 〈α〉 ⊂ R such that

〈α〉 =

k∏
i=0

pei
i

for some unique set {pi} and {ei}, the norm of 〈α〉, i.e., N(〈α〉) can be
factorized as

|N(α)| = N(〈α〉) =

k∏
i=0

N(pi)
ei =

k∏
i=0

peiki
i (2.12)

for pi, ki such that N(pi) = pki
i .

In order to simplify the formula in (2.12), it is sufficient to consider only
those prime ideals p whose norms are prime instead of powers of prime.
These ideals are hence given a special name, called as first degree prime
ideals. Indeed, the use of first degree prime ideals has a strong relationship
with the set of pairs (p, r) introduced in the previous section for sieving
algebraic integers. Furthermore, the sufficiency of using this type of ideals
can be shown by the following result:

Proposition 2.5.3. Let f(x) be a monic, irreducible polynomial with integer
coefficients and a root θ ∈ C. The set of all first degree prime ideals in Z[θ]

Chapter 2. Sieving in the General Number Field Sieve 37

is in bijective correspondence‖with the set of all pairs (p, r) for p, r ∈ Z such
that f(r) ≡ 0 (mod p).

Thus, if an algebraic integer (a + bθ) ∈ O satisfies that a ≡ −br (mod p)
for some pair (p, r) described above, it means p|N(a + bθ) and hence there
exists a first degree prime ideal p with N(p) = p such that p| 〈a + bθ〉. Anal-
ogously, the process of sieving an algebraic integer in O can be turned into
sieving an ideal in the same ring.

However, the prime ideals in Proposition 2.5.1 for factoring are that of
the ring O, whereas those used in the previous section for the sieving step
lie within the ring Z[θ]. This inconsistence creates some obstructions since
a prime ideal in Z[θ] is not necessarily the one in O and vice versa. Moving
a step further, an approach to address this problem is to check whether the
result in Proposition 2.5.1 would hold if the prime ideals in Z[θ] were used.
Fortunately, as it is the case, the following result confirms such feasibility
[14, Proposition 7.1, pp. 63-64]:

Proposition 2.5.4. Let K be an algebraic number field, with K∗ being its
multiplicative group, i.e., K \ {0}. Let A be an order of K. For each prime
ideal p ⊂ A, there exists a group homomorphism lp : K∗ → Z such that

(a) if x ∈ A, then lp(x) ≥ 0

(b) if x ∈ A, then lpx > 0 iff x ∈ p

(c) if x ∈ K∗, ∃P = {pi} of finite order such that lpi
(x) > 0 and∏

p∈P

(N(p))lp(x) = |N(x)|

Applying this proposition to the current situation, the number field K
is assigned to the field Q(θ) of polynomials in θ with rational coefficients.
Consequently, the corresponding order A of Q(θ) can be mapped to the ring
Z[θ]. Thus, considering the claim (c) of this result, it is exactly what was
mentioned in (2.12). This raises a hope for the feasibility of the sieving
technique described in the previous section.

‖Set A is said to be in bijective correspondence with set B, if there exists a mapping
φ : A→ B such that for all y ∈ B there exist a unique x ∈ A with φ(x) = y.

Chapter 3

Computing perfect squares
with matrix equations

Recall from the previous section that some inconsistences have been encoun-
tered when dealing with the sieving of the algebraic integers in Z[θ]. As
described in §2.4, the practical sieving step is built upon the ring Z[θ] of
polynomials in θ with integer coefficients. The main benefit to set up the
algorithm on this ring is in its ability which allows a direct and simple map-
ping from a perfect square β2 ∈ Z[θ] to a perfect square x2 with x ∈ Z as
shown in Proposition 2.1.1.

On the other hand, as §2.5 illustrates, the actual mathematical context
which satisfies described in §2.4 is not Z[θ], but its containing ring O. This
inconsistence raises a question on whether the algorithm for sieving algebraic
integers previously explained is any longer valid. Following Proposition 2.5.4,
a compensation mapping is created to make sure that the sieving algorithm
works at least in its principle. Unfortunately, this mapping does not guaran-
tee that the outcome of the sieve would potentially produce a perfect square,
firstly in O, then in Z[θ], and finally in Z.

In filling the above gaps, a number of techniques has been created inde-
pendently by the interested community. As an example, one could explicitly
move from the ring Z[θ] to O by using prime ideals in O [14, p. 61]. On
the contrary, this chapter describes a less complicated method that fulfills
the requirements and hence increases the probability that the smooth values
produced by the previous sieving technique would be sufficient to produce
the perfect square. In addition, it also discusses in details how the final set U
is chosen from the large set of smooth values that is finally used to construct
the algebraic square.

39

40 Chapter 3. Computing perfect squares with matrix equations

3.1 The shortcomings of Z[θ]

Note that in the principle described in §1.4 one attempts to find among the
set S of smooth values a subset U such that the product of its elements con-
tains only factors of even prime powers. In the rational sieve, this is enough
to ensure that the above product is a perfect square. However, as briefly
mentioned in §2.5, the algebraic sieve does not directly check for smoothness
of algebraic integers due to limitation of computing techniques. Instead, an
indirect method using the norm mapping is invoked to check for smoothness.
This means that even if norm values of certain algebraic integers in UA ⊂ A
are smooth, and that their norm product is a square, it is still possible that
the actual product of algebraic integers in UA is not a perfect square. This
at the final stage may lead to a non perfect square in Z when the homomor-
phism φ is used.

On the other hand, it is of crucial importance that even though the square-
ness of a norm product alone does not fully imply a perfect square in Z[θ],
the inverse is always true, which makes this partial condition indispensable
in selecting smooth values. Before diving into this assertion, it is necessary to
justify the value of the homomorphism lp introduced in the previous section:

Proposition 3.1.1. Let a and b be two coprime integers. Given a first
degree prime p ⊂ Z[θ] that maps to a pair (p, r) using an isomorphism in
Proposition 2.5.3, then lp(a + bθ) = ep,r(a + bθ).

Proof. Since p corresponds to the pair (p, r), it follows by Proposition 2.5.3
along the lines of [4, p. 16] that N(p) = p. According to Proposition 2.5.4(c)
the absolute value of N(a + bθ) contains factor plp(a+bθ).

Meanwhile, by assumption the notation ep,r(a+bθ) stands for the number
of p in the factors of N(a + bθ). Thus lp(a + bθ) = ep,r(a + bθ).

Based on this result, it is straightforward to show that the squareness of
a norm product is important in determining a square algebraic integer. The
following result addresses this hypothesis:

Proposition 3.1.2. let U be a set of algebraic integers a+ bθ ∈ O such that
their product forms a square of an algebraic integer in O. Then the norm of
such square is also a perfect square in Z, i.e.,∑

a+bθ∈U

lp(a + bθ) ≡ 0 (mod 2)

for all first degree prime ideals p ⊂ Z[θ].

Chapter 3. Computing perfect squares with matrix equations 41

Proof. Let β2 ∈ O be the square formed by the algebraic integers of concern.
Recall from Proposition 2.4.1 that since σi are monomorphisms, σi(β

2) =
σi(β)σi(β). By applying this to the computation of N(β2) similar to that in
(2.6) it follows that:

N(β2) =
d∏

i=1

σi(β
2) =

d∏
i=1

σi(β)2 =

(
d∏

i=1

σi(β)

)2

= (N(β))2

Let p ⊂ Z[θ] be a first degree prime ideal corresponding to a pair (p, r) such
that pkp|N(β) and hence ep,r(β) = kp for the largest possible kp ∈ Z. It
follows that p2kp |(N(β))2 = N(β2) and hence ep,r(β

2) = 2kp ≡ 0 (mod 2).
Thus the proposition can be proven as in [14, p. 60]:∑

a+bθ∈U

lp(a + bθ) ≡
∑

a+bθ∈U

ep,r(a + bθ)

≡ ep,r

(∏
a+bθ∈U

a + bθ

)

≡ ep,r

(
β2
) ≡ 2kp ≡ 0 (mod 2)

Apart from the above indicator which determines a square of an algebraic
integer in O, there are obstructions which prevent it from fully attesting the
prediction. First of all, as explained in §2.5, the underlying technique used
in the algebraic sieve actually utilizes the operations on ideals in O instead
of their generators, i.e., algebraic integers in O. Therefore, in order for the
perfect square in O to be trustworthy, it is necessary that its corresponding
principal ideal must also be a square of an ideal in O, that is,∏

a+bθ∈U

(a + bθ)O = o2 = β2O =
〈
β2
〉

(3.1)

for the refined set U described above. However, since all the primes ideals
used to factor each ideal generated by an element in U are ideals in Z[θ]
rather than O, the resulting ideal may not be a square of an ideal in O.

Furthermore, even if the square of an ideal can be generated by an al-
gebraic integer β2 ∈ O as in (3.1), it is still not necessary the case that∏

a+bθ∈U (a + bθ) = β2 since the results from both sides could generate the
same ideal even though their values are different. Thus, it is theoretically
required that these gaps must be overcome by some means, or otherwise the
probability for the perfect square to appear will plummet drastically.

42 Chapter 3. Computing perfect squares with matrix equations

3.2 The use of quadratic characters

The idea of using quadratic characters was originated from an observation
about the feature of quadratic residues throughout the whole idea of integer
factorization. Indeed, the initial thought states that if an integer a is truly
a perfect square, then for each prime p ∈ Z for which p � a, either a mod p
is itself a perfect square or a is quadratic residue modulo p, i.e., there exists
x ∈ Z such that x2 ≡ a (mod p). In a more precise term, the following
concept is used to specify whether an integer is a quadratic residue:

Definition 3.2.1. Given a ∈ Z and a prime p ∈ Z such that p � a, the

Legendre symbol, denoted as
(

a
p

)
, can be defined as follows:

(
a

p

)
=

⎧⎨
⎩

1 if ∃γ ∈ Z : γ2 ≡ a (mod p)
−1 if �γ ∈ Z : γ2 ≡ a (mod p)
0 if p|a

Thus, assume that there is no way to check whether a is a perfect square,
an alternative is to try testing whether a is quadratic residue modulo some
primes p � a. This does not explicitly guarantee that a is a perfect square,
but the more number of tests are to be invoked, the more likely that a is a
perfect square in Z. However, in the case of the GNFS, it is not necessary
to test the perfect square in Z, but rather in Z[θ]. Therefore, a similar
meaning to the above test must be built to test the set U in (3.1) over some
different primes in Z[θ]. As such, the following result integrates the use of
the Legendre symbol into justifying the squareness of an algebraic integer:

Proposition 3.2.1. Let U be the set of a + bθ ∈ O such that the product
of elements in U results in a perfect square β2 ∈ O. Let p ⊂ Z[θ] be a first
degree prime ideal in correspondence to a pair (p, r) where p is prime such
that β /∈ p, i.e., a �≡ −br (mod p). Then the following holds:

∏
a+bθ∈U

(
a + br

p

)
= 1 (3.2)

Proof. Note that the fraction in (3.2) is the Legendre symbol instead of the
conventional fraction. In this case a ring homomorphism φ : O → {±1} can
be defined for some θ ∈ O and k ∈ Q as

φ(θ) =

(
r

p

)
and φ(k) =

(
k

p

)

Chapter 3. Computing perfect squares with matrix equations 43

Thus, it is obvious that φ(β2) = 1. On the other hand, since φ is a
homomorphism and the product of element in U forms a square β2 in O, it
follows that

1 = φ(β2) = φ

(∏
a+bθ∈U

a + bθ

)
=

∏
a+bθ∈U

φ(a + bθ) =
∏

a+bθ∈U

(
a + br

p

)

As a result, the set of such pairs (p, r) corresponding to the first degree
prime ideals p ⊂ Z[θ] used for the above test is named as the quadratic
character base, denoted as Q. The value of #Q greatly affects the likelihood
that the algebraic integer formed by the refined set U of smooth values is
really a perfect square. Moreover, as the above result only assures for a
product to be a square in O, in order to turn it into a square in Z[θ], another
condition is required. Note from an improvement in §2.2 that a perfect square
β2 in O can be turned into a corresponding square in Z[θ] by multiplying it
with f ′(θ)2. Hence, the test is only effective for f ′(θ)2β2 ∈ Z[θ] if f ′(θ) �∈ p,
i.e., p � f ′(r) for p ∈ Q.

3.3 Finding the perfect square

At this stage the idea of the GNFS has led to the existence of three different
bases: the rational factor base F with #F = vf , the algebraic factor base A
with #A = va, and the quadratic character base Q with #Q = vq. Assume
that after the sieving step the set S contains a number of pairs (a, b), each
of which satisfies that a + bm is smooth over F and a + bθ is smooth over
A for some θ ∈ C such that f(θ) = 0, which is not of our concern. Then,
the next step concentrates on finding a subset U ⊂ S with #U = vu which
satisfies (2.2). In other words, assume that for each (ai, bi) ∈ U such that

ai + bim =
∏
pj∈F

p
ki,j

j (3.3)

∏
(ai,bi)∈U

ai + bim =
∏

(ai,bi)∈U

⎛
⎝∏

pj∈F

p
ki,j

i

⎞
⎠ =

∏
pi∈F

p
∑vu

j=1 kj,i

i

then the following holds for 1 ≤ i ≤ vf :

44 Chapter 3. Computing perfect squares with matrix equations

vu∑
j=1

ki,j ≡ 0 (mod 2) (3.4)

Thus, in order to find the set U that satisfies (3.4), it is necessary to
represent (3.3) for each pair (a, b) ∈ S under some form convenient for com-
puting techniques. Note also that since this selection process only considers
whether the product is a square, it is sufficient that each kj,i in (3.3) is re-
duced modulo 2. The simplest way of doing this is to use a vf -dimensional
F2-vector for each (ai, bi) ∈ S:〈

ki,1, ki,2, . . . , ki,vf−1
, ki,vf

〉
(mod 2) (3.5)

Similarly, suppose for each (ai, bi) ∈ U such that

ai + biθ =
∏
pj∈A

p
lpj (ai+biθ)

j

∏
(ai,bi)∈U

ai + biθ =
∏

(ai,bi)∈U

(∏
pi∈A

p
lpi (ai+biθ)

i

)
=
∏
pi∈A

p
∑vu

j=1 lpi (aj+bjθ)

i

then the similar behavior to (3.4) emerges for each pi ∈ A:

vu∑
j=1

lpi
(aj + bjθ) ≡ 0 (mod 2) (3.6)

This causes another type of vector to be constructed in the same manner
as (3.5) for each (ai, bi) ∈ S, but with va dimensions:〈

lp1(ai + biθ), lp2(ai + biθ), . . . , lpva−1
(ai + biθ), lpva

(ai + biθ)
〉

(mod 2)

(3.7)
At the same time, in satisfying the condition specified in Proposition 3.2.1,

a number of different values need to be associated with each (ai, bi) ∈ S. They
in particular form a vq-dimensional vector as follows:

〈
χq1(ai + bis1), χq2(ai + bis2), . . . , χqvq

(ai + bisvq)
〉

(3.8)

for

χp(x) =

{
0
(

x
q

)
= 1

1 otherwise

}

Chapter 3. Computing perfect squares with matrix equations 45

Using this vector structure, if the sum of all vectors of (a, b) ∈ U for each
dimension results an even number, then the condition in Proposition 3.2.1
matches, otherwise the product from U is not a square. This structure turns
the multiplicative process to the additive one due to the observation that
(−1)(−1) = 1 can be switched into 1 + 1 ≡ 0 (mod 2).

Note that since for each (a, b) ∈ S there exist distinct instances of vectors
(3.5), (3.7), and (3.8), it is even simpler to merge them into a single vector
[14, pp. 69-70]. In addition, it is also important to determine the sign of
a + bm produced from each (a, b) ∈ S to measure the overall sign of y2

mentioned in (2.2). Otherwise if the result is for instance −16, it is not a
square even though 16 is a square. In overall, the proper F2-vector ui will be
of size 1 + vf + va + vq with structure of coordinates as below:

〈{
0 ai + bim > 0
1 otherwise

}
,

ki,1 (mod 2), ki,2 (mod 2), . . . , ki,vf
(mod 2),

lp1(ai + biθ) (mod 2), lp2(ai + biθ) (mod 2), . . . , lpva
(ai + biθ) (mod 2),

χq1(ai + bis1), χq2(ai + bis2), . . . , χqvq
(ai + bisvq)

〉
As mentioned, the first dimension of the above vector indicates whether

the corresponding a + bm is a positive integer. In the final selection of the
set U , if the sum of all values of elements in U results in a even number for
this dimension, the product of all a + bm formed by elements in U will be
a positive integer, and vice versa. Moreover, in order to assure such a set
U can be found satisfying all of the above conditions, it is necessary that
the set S of found smooth values must contains more than 1 + vf + va + vq

elements, i.e., vs = #S > 1 + vf + va + vq. As indicated in [26, Lemma 4.17,
p.333], this claim is true as long as the following result holds:

Proposition 3.3.1. Let V be a vector space spanned by a set of n vectors
u1, u2, . . . , un. If v1, v2, . . . , vm ∈ V and m > n, then these vectors are linearly
dependent.

Note that the vector space of concern has d = 1+ vf + va + vq dimensions
over F2, so it is spanned by d unit vectors. Thus since vs > d, all vector ui

(1 ≤ i ≤ vs) formed by elements in S are linearly dependent. In other words,
there exists a scalar list c1, c2, . . . , cvs such that

vs∑
i=1

ciui = 0 (mod 2) (3.9)

46 Chapter 3. Computing perfect squares with matrix equations

where 0 is a vector of d dimensions with all components are 0. In this case,
the selection of elements in U is straightforward: if ci is 1 then (ai, bi) ∈ S is
picked to the set U , or discarded otherwise.

3.4 The Gaussian elimination method

In order to find the set {ci} as in (3.9), it is necessary that a coefficients matrix
{ki,j} is formed with size (1+vf +va +vq)×vs, where each ki,j corresponds to
the i-th component of a vector uj representing (aj , bj) ∈ S. In other words,
each column of this matrix B is the vector representing (aj , bj) ∈ S. A vector
variable x consists of candidates for ci with a zero-vector 0 are declared so
as to construct the following equation:

Bx = 0 (mod 2) (3.10)

By solving this equation, a non-trivial solution of x is guaranteed to be
obtained which returns the set {ci} as desired. Indeed, the simplest way
to deal with (3.10) is to use the Gaussian elimination (GE) which reduces
the matrix B into row echelon form and solves the corresponding system of
linear equations from the bottom. In the standard algorithm [33, p. 151],
there is however a high probability that the GE will fail to solve the above
equation [33, p. 153]. In dealing with this problem, it is necessary to recall
the following important concept concerning this method:

Definition 3.4.1. In Gaussian elimination, a pivot row of a matrix is a
row whose first non-zero component is of greatest value within its containing
column vector.

That is to say, if ki,j of a matrix of size m× n is the first non-zero coeffi-
cient in row i and ki,j ≥ kt,j for every 1 ≤ t ≤ m, then row i is a pivot row.
With this concept, the original version of the GE can be modified to increase
its stability, i.e., to enhance the probability that a reasonable solution will
return, regardless of whether it is trivial or not. The summary of this version
of GE is then followed by Algorithm 3.4.1 below.

However, since the complexity of the GE for reducing a matrix of size
n×m is O(n ·m2), it is very slow for this method to finish if n exceeds 107 if
the GE is to be applied in the general way as specified by Algorithm 3.4.1. In
this situation, it is worth to note that the matrix B has some certain features
which could be considered to reduce the amount of computation required.

Chapter 3. Computing perfect squares with matrix equations 47

Algorithm 3.4.1: GaussianWithPivoting

Input: matrix B of size n×m
Output: Row echelon form of B
begin1

i ← 1;2

j ← 1;3

while i < n or j < m do4

/* Find the j-th pivot row for reduction */

pivot ← i;5

for k ← i + 1 to m do6

if |B[k, j]| > |B[i, j]| then7

pivot ← k;8

endif9

endfor10

if B[pivot, j] �= 0 then11

/* Push the pivoting row up */

� Switch row i and pivot;12

/* Reduce the pivot row i */

B[i] ← B[i]/B[i, j];13

for u← i + 1 to n do14

/* Reduce row u by the reduced pivot row i */

B[u] ← B[u]−B[i]B[u, j];15

endfor16

i ← i + 1;17

endif18

j ← j + 1;19

endw20

end21

Considering an example in which B is roughly of size 106 × 106. This
implicitly means the factor bases each contains some 500000 primes. There-
fore, every smooth value in accord with its corresponding factor base would
contains a trivial number of distinct prime factors compared to the whole
base. In other words, the number of 1s occurred in the vector representative
of each smooth value associated with elements of the factor bases is very
small. On the other hand, note that it is conjecturally sufficient to use a rel-
atively small-size quadratic character base Q (e.g. 100 elements) to harden
the square, and so this does not affect the sparsity of 1s in each column vec-
tor of B. Thus, the matrix B is said to be sparse as it contains mostly 0s.
Applying this comment to the GE, it is obvious that the For loop on lines

48 Chapter 3. Computing perfect squares with matrix equations

14-16 of Algorithm 3.4.1 may not need to have complexity O(n), but instead
O(d) where d is the average appearance of 1s in each column vector of B,
heuristically given by few hundreds.

Meanwhile, since the matrix is concerned over Z/2Z, it is also not nec-
essary to use the For loop on lines 6-9. This is because the pivot row to be
chosen is always the row containing the first non-zero component encountered
in column j, and by some special way of storing the matrix, this row can be
obtained immediately without being searched through the whole matrix.

In overall, the final complexity of the GE could be easily reduced from
O(nm2) to O(ndm). With this requirement, the method offered by the GE
is still able to deal with matrix of large size, provided that some parallel
computing technique must be devised to speed up the computation process.
In fact, if a number of independent pivot rows have been successfully found,
then all other rows can be independently reduced by these rows at the same
time without having to wait for each other to complete. The idea of this
concurrent process can be summarized as in Algorithm 3.4.2.

In order to facilitate this algorithm, the matrix B needs to be stored
somehow so that it would be feasible to load it into physical memory when
performing computation. Since B is vertically sparse, a good idea is to store
only non-zero coefficients along with their positions and a linking method
for non-zero coefficients in the same row. The linking method is helpful not
only when performing row operation, but also when finding pivot rows where
leading coefficients lie on the middle vector columns of the matrix. For such
reason, each non-zero coefficient needs to be linked with its left and right
closest non-zero coefficients on the same row.

As mentioned earlier, even with this improvement, the GE should only be
used for reducing small enough matrix. A faster iterative method should be
used to cope with larger matrices, such as those with size 107 × 107. In the
following sections, a method contributed by Lanczos and other researchers is
introduced which uses a different approach to the problem and hence signif-
icantly lessens the overall running time for solving this matrix equation.

3.5 Standard Lanczos’s algorithm

Invented by Cornelius Lanczos in early 1950s and deployed widely since mid-
1970s, Lanczos’s algorithm became a very fast algorithm for computing eigen-

Chapter 3. Computing perfect squares with matrix equations 49

Algorithm 3.4.2: ParallelGauss

Input: matrix B of size n×m
Output: Row echelon form of B
begin1

i ← 1; j ← 1;2

while j < n do3

pivotSet ← {};4

while j-th pivot row not exist do5

j ← j + 1;6

endw7

while j-th pivot row exist do8

/* Find and swap j-th pivot row with row i */

� Add j-th pivot row to pivotSet;9

i ← i + 1; j ← j + 1;10

endw11

/* Concurrently reduce other rows with pivotSet */

for k where B[k, j] �= 0 do12

for pivot ∈ pivotSet do13

B[k] ← B[k]− B[k, j]pivot;14

endfor15

endfor16

endw17

end18

50 Chapter 3. Computing perfect squares with matrix equations

values of large, sparse, and symmetric matrices. Moreover, this method is
destined to be used in computer program to replace the simple GE algorithm,
with support of parallel computing as well. In principle, Lanczos’s algorithm
and many other iterative methods try to represent the solutions either by a
number of deterministic vectors or projecting them onto different subspaces
and combine these representations to get the final result. The reason why
such methods are regarded as iterative is due to the fact that the construc-
tion of the sequence of vectors and subspaces must be computed in order,
iteratively using the same algorithm.

As a result, given a symmetric matrix A ∈ Rn×n, a vector b ∈ Rn, the
standard Lanczos’s algorithm (iteration) solves the matrix equation Ax =
b by firstly computing the following sequence of vectors, as described by
P.L.Montgomery in [18, pp. 108-109]:

w0 = b

wi = Awi−1 −
i−1∑
j=0

ci,jwj for ci,j =
〈Awj ,Awi−1〉
〈wj,Awj〉 =

(Awj)
TAwi−1

wT
j Awj

(3.11)

where 1 ≤ i ≤ m for some least integer m ≥ 0 such that wm+1 = 0. Following
this construction, the algorithm can be simplified by inferring an important
result as below:

Proposition 3.5.1. Given the sequence of {wi} as in (3.11), then for every
wi and wj with i �= j, the inner product wT

i Awj, denoted as 〈wi,Awj〉, is 0,
and hence the two vectors wi and wj are said to be conjugated with respect
to A.

Proof. The proof can be done using mathematical induction twice. At the
first stage, one needs to prove that the proposition holds for i = 0 and
1 ≤ j ≤ m. Indeed, considering j = 1, the base case follows as:

〈w0,Aw1〉 =

〈
w0,A

(
A− 〈Aw0,Aw0〉

〈w0,Aw0〉
)

w0

〉

= 〈w0,AAw0〉 −
〈
w0,A

〈Aw0,Aw0〉
〈w0,Aw0〉 w0

〉

= wT
0 AAw0 −wT

0 A
〈Aw0,Aw0〉
〈w0,Aw0〉 w0 (3.12)

Chapter 3. Computing perfect squares with matrix equations 51

Since A is symmetric, it is obvious that A = AT. Furthermore, with the
fact that aTbT = (ba)T and the fraction in (3.12) is in R, the manipulation
then continues as:

(3.12) = wT
0 A

TAw0 −wT
0 A

T 〈Aw0,Aw0〉
〈w0,Aw0〉 w0

= (Aw0)
T(Aw0)− (Aw0)

T 〈Aw0,Aw0〉
〈w0,Aw0〉 w0

= 〈Aw0,Aw0〉 −
〈
Aw0,

〈Aw0,Aw0〉
〈w0,Aw0〉 w0

〉

= 〈Aw0,Aw0〉 − 〈Aw0,Aw0〉
〈w0,Aw0〉 〈Aw0,w0〉 = 0

Assume then that the proposition holds for i = 0 and j = k < m, the
case j = k + 1 can now be considered as follows:

〈w0,Awk+1〉 =

〈
w0,AAwk −

k∑
t=0

〈Awt,Awk〉
〈wt,Awt〉 Awt

〉

= 〈Aw0,Awk〉 −
k∑

t=0

〈Awt,Awk〉
〈wt,Awt〉 〈w0,Awt〉

= 〈Aw0,Awk〉 − 〈Aw0,Awk〉
〈w0,Aw0〉 〈w0,Aw0〉 = 0

Thus, the principle of mathematical induction implies that the proposi-
tion holds for i = 0, and this result can be used as the base case to prove
that the same applies when i = k + 1, assumed that it is true when i = k:

〈wk+1,Awj〉 =

〈
Awk −

k∑
t=0

〈Awt,Awk〉
〈wt,Awt〉 wt,Awj

〉

= 〈Awk,Awj〉 −
k∑

t=0

〈Awt,Awk〉
〈wt,Awt〉 〈wt,Awj〉

= 〈Awk,Awj〉 − 〈Awj ,Awk〉
〈wj ,Awj〉 〈wj ,Awj〉 j �=k

= 0

j=k
= 〈Awk,Awk〉 − 〈Awk,Awk〉

〈wk,Awk〉 〈wk,Awk〉 = 0

52 Chapter 3. Computing perfect squares with matrix equations

According to the above proposition, the vectors wi are independent of
each others, which means their span is well defined. On the other hand, this
result leads to a simplification of the computation of those wi in the following
observation [24, Lemma 2.1.1]:

Proposition 3.5.2. Given the constants ci,j defined above, then ci,j = 0 for
every j < i− 2.

Therefore, most of the terms appeared in the computation of wi will
vanish as they are multiplied by 0, except for the closet two terms:

wi = Awi−1 − ci,i−1wi−1 − ci,i−2wi−2 for i ≥ 2 (3.13)

The solution is then revealed by the following equation:

Proposition 3.5.3. Given a symmetric matrix A ∈ Rn×n, a vector b ∈ Rn

and a collection of vectors wi constructed as above. Then the following holds:

Ax = A
m∑

i=0

〈wi, b〉
〈wi,Awi〉wi = b (3.14)

Proof. Firstly, it is important to prove that 〈Ax,wi〉 = 〈b,wi〉. Indeed, since
the fraction in the composition of x is in R,

〈wi,Ax〉 =
m∑

j=0

〈wj , b〉
〈wi,Awi〉 〈wi,Awj〉 =

〈wi, b〉
〈wi,Awi〉 〈wi,Awi〉 = 〈wi, b〉

and hence 〈Ax,wi〉 = 〈wi,Ax〉T = 〈wi, b〉T = 〈b,wi〉
Moreover, from (3.11) and the construction of x it can be inferred that

b, x ∈ Span{wi}. Note also that Awi ∈ Span{wi} by (3.11), hence Ax ∈
Span{Awi} ⊂ Span{wi}. Thus Ax−b ∈ Span{wi} and can be represented
as a combination of wi. It is now straightforward to prove the proposition
as follows:

〈Ax− b,Ax− b〉 =

〈
Ax− b,

m∑
i=0

kiwi

〉

=

m∑
i=0

ki 〈Ax− b,wi〉 =

m∑
i=0

ki (〈Ax,wi〉 − 〈b,wi〉)

=

m∑
i=0

ki (〈Ax,wi〉 − 〈b,wi〉) = 0⇔ Ax = b

Chapter 3. Computing perfect squares with matrix equations 53

In the construction of wi described by (3.13), the only computation at
each iteration is the multiplication of the matrix A with wi−1. Due to the
fact that A is sparse and the total number of non-zero entries is dn for d
much less than n, this multiplication can be taken with complexity O(dn)
by representing the matrix A by its list of non-zero entries and multiply
them one by one to each corresponding component of the vector wi. Since
the number of wi is at most n so that they can be linearly independent, the
overall complexity of the method is O(dn2), which is approximately the same
as the GE, except that it is much simpler to implement than in the case of
the GE.

The problem, however, comes into place when this method is applied to
solve the matrix equation created by the GNFS. In particular, the vector b
is 0 in the first place, which means no wi will return. In addition, since this
matrix equation of the GNFS is concerned in Z/2Z, it is very likely that a
vector wi if created is self-orthogonal, i.e., 〈wi,Awi〉 = 0, making the coeffi-
cients ci,j in (3.13) meaningless.

To address this problem, the vector b can simply be produced from the
combination of some vector columns in A and multiplied by 2 to to get
even components. In order to generate the symmetric matrix A from B,
the matrix equation can be turned into ATAx = ATb where there is a high
probability that a solution would satisfy the original one. The remaining task
is to apply Lanczos’s algorithm over R instead of Z/2Z with some hope to
have a non-trivial solution. This solution when modulo 2 will be the desired
result for the matrix equation of the GNFS.

The next section describes how this algorithm could be further improved
to bundle a number of vectors wi into blocks and perform the computation
for each iteration the same as above but with the number of iterations greatly
reduced. In addition, it will also secure the chance that a solution can be
found, unlike the application of the standard version as mentioned above.

3.6 The Block Lanczos’s algorithm

After the success of the standard Lanczos’s algorithm, some attempts were
spent to make enhancements over this method. In 1995, Montgomery pub-
lished a new improvement of Lanczos’s idea which groups the vectors wi into
blocks of vectors, or matrices. This new method requires less iterations while
still possesses the same computing speed at each iteration, and hence it came

54 Chapter 3. Computing perfect squares with matrix equations

up with a positive achievement for solving matrix equations.

In this context, instead of finding pairwise A-conjugate vectors wi, the
algorithm targets at collecting a number of pairwise A-orthogonal subspaces
Wi of Fn

2 . For the possibility of this method, the following definition is in
effective use:

Definition 3.6.1. Let A be an n×n symmetric matrix. A subspaceW ⊆ Kn

is called A-invertible if its any basis Wsatisfies that WTAW is invertible.

Definition 3.6.2. Let A be an n × n symmetric matrix. Two subspaces
Wi,Wj ⊂ Kn are said to be A-orthogonal if for every wi ∈ Wi and wj ∈
Wj, 〈wi,Awj〉 = 〈wj ,Awi〉 = 0.

In addition, the process of projecting a vector onto an A-invertible sub-
space can be done as below [24, pp. 11-12]:

Proposition 3.6.1. If a subspace W ⊆ Kn is A-invertible, then for every
u ∈ Kn, there exists uniquely a vector w ∈ W and a vector v ∈ Kn such that
u = w+ v where v is A-orthogonal to W. Furthermore, if column vectors of
some matrix Wspan W, then

w = W(WTAW)−1WTAu

Thus, the vector w in Proposition 3.6.1 is the projection of u onto the sub-
space W. Similar to the standard version, the next proposition summarizes
the heart of the block Lanczos’s algorithm:

Proposition 3.6.2. Let A ∈ Kn×n. Let {Wi}m
i=0 be a set of pairwise A-

orthogonal subspaces such that each Wi is A-invertible and W =
∑Wi is

A-invariant. Then for each b ∈ W, the set of vectors {wi}m
i=0 where wi ∈ Wi

and that each Awi−b is orthogonal toWi, forms the solution for the equation
Ax = b. Equivalently, x can be computed as below:

x =

m∑
i=0

Wi(W
T
i AWi)

−1WT
i b (3.15)

where column vectors of Wi form a basis for Wi.

In order to compute the subspaces Wi, or more precisely the matrices
Wi, it is possible to use the following iterative algorithm:

Chapter 3. Computing perfect squares with matrix equations 55

Proposition 3.6.3. Let A ∈ Kn×n and V0 be an A-invertible matrix in
Kn×N . The matrices Wi that form the bases for subspaces Wi described in
Proposition 3.6.2 can be constructed as follows:

Wi = ViSi

Vi+1 = AWiS
T
i + Vi −

i∑
j=0

WjCi+1,j (3.16)

where each Si is such that the A-invertible matrix Wi is the largest collection
of columns in Vi. Moreover, each Ci,j must be of the form:

Ci+1,j = (WT
j AWj)

−1WT
j A(AWiS

T
i + Vi) (3.17)

The main idea for using Si bases on the fact that Vi may not be A-
invertible, and thus cannot be chosen to be Wi. However, a number of
columns in Vi may be chosen which satisfy this condition. In order to sim-
plify the computation of Vi, a similar observation to the standard Lanczos’s
algorithm can be done to reduce it to a few recurrences:

Proposition 3.6.4. If i > j, then VT
i AWj = 0 and hence Ci+1,j in (3.17)

can be reduced to:

Ci+1,j = (WT
j AWj)

−1WT
j A

2WiS
T
i (3.18)

Moreover, if the process of selecting columns in Vi is more careful so that
each column of Vi belongs either to Wi or Wi+1, then most of the terms in
computing Vi could be successfully canceled , that is,

Proposition 3.6.5. If the span of column vectors in Vi, denoted 〈Vi〉, is a
subset of

∑i+1
j=0Wj, then for j < i− 2, Ci+1,j = 0

With this result, the construction of Vi in (3.16) is simplified to three
terms recurrence, i.e.,

Vi+1 = AWiS
T
i + Vi −WiCi+1,i −Wi−1Ci+1,i−1 −Wi−2Ci+1,i−2 (3.19)

Note that since the size of the matrix A is large, even though the algo-
rithm is equipped with the result above, it is still time consuming to naively
compute each iteration in such way. Therefore, Montgomery gave further
clarification on what to compute and what to be inferred [18, pp.112-113]:

Proposition 3.6.6. The computation of Vi as in (3.19) can be turned into

Vi+1 = AViSiS
T
i + ViDi+1 + Vi−1Ei+1 + Vi−2Fi+1 (3.20)

56 Chapter 3. Computing perfect squares with matrix equations

where

Di+1 = IN −Winv
i

(
VT

i A
2ViSiS

T
i + VT

i AVi

)
Ei+1 = −Winv

i−1V
T
i AViSiS

T
i

Fi+1 = −Winv
i−2

(
IN −VT

i−1AVi−1W
inv
i−1

) (
VT

i−1A
2Vi−1Si−1S

T
i−1 + VT

i−1AVi−1

)
SiS

T
i

Winv
i = Si

(
ST

i V
T
i AViSi

)−1
ST

i

Since for any arbitrary vector b, the process of finding x such that Ax = b
is exactly the same, the blocked version of Lanczos’s algorithm can also be
applied to find the solution for the equation AX = B where X and B are
matrices of size n × N . In other words, it is analogous to the process of
finding solutions for N different equations at the same time. Note also that
it is convenient to substitute Winv

i into (3.15) to get

x =

m∑
i=0

ViSi(W
T
i AWi)

−1ST
i V

T
i b =

m∑
i=0

ViW
inv
i VT

i b (3.21)

Meanwhile, even though the formulae in Proposition 3.6.6 look compli-
cated, they in fact have been categorized into groups of known and unknown
components so that the computation at each iteration can be explicitly spec-
ified, as shown in Algorithm 3.6.1.

According to this algorithm, the heaviest matrix operations within each
iteration fall into the following points:

• Line 18: in the case of the GNFS, the matrix A is formed by BTB.
Hence, there are two ways to multiply A by Vi, either as

(
BTB

)
Vi

or BT(BVi). The former will compute A first in an extremely fast
manner, but later on it would face a problem in computing AVi since
A can no longer be guaranteed as sparse, even if B is sparse. The latter
method, i.e., BT(BVi), performs twice the computation of an m × n
and an n × N matrices with complexity O(dn) using outer product.
In this case dn stands for the number of non-zero entries in B. Using
this method avoids us from storing the matrix A and restricts the
theoretical running time to O(dn).

• Line 19: using Coppersmith’s method mentioned in [24, pp. 38-40],
the multiplication of an N × n by an n × N matrices is reduced from
O(Nn) to O(n).

• Line 20: by storing the sum of each column vector of ai, the computa-
tion of aT

i a would require only O(N2) where ai ∈ Fn×N
2 .

Chapter 3. Computing perfect squares with matrix equations 57

Algorithm 3.6.1: BlockLanczos

Input: Y ∈ Kn×N , symmetric A ∈ Kn×n

Output: X ∈ Kn×N such that AX = Y, last Vi

begin1

/* Algorithm initialization */

V−2 ← V−1 ← 0 ; /* Vi ∈ Kn×N */2

V0 ← Y;3

d−1 ← S−1S
T
−1 ← IN ; /* Si ∈ KN×Rank(Vi), SiS

T
i ∈ KN×N */4

Winv
−2 ←Winv

−1 ← 0 ; /* Winv
i ∈ KN×N */5

a−1 ← b−1 ← c−1 ← 0 ; /* ai, bi, ci ∈ Kn×N */6

a0 ← AV0;7

b0 ← VT
0 a0;8

c0 ← aT
0 a0;9

� Compute Winv
0 and d0 = S0S

T
0 from d−1 and b0;10

X← V0W
inv
0 VT

i Y ; /* X ∈ Kn×N */11

/* Main iterating loop */

i ← 0;12

while bi �= 0 do13

Di+1 ← IN −Winv
i (cidi + bi) ; /* Di ∈ KN×N */14

Ei+1 ← −Winv
i−1bidi ; /* Ei ∈ KN×N */15

Fi+1 ← −Winv
i−2

(
IN − ai−1W

inv
i−1

)
(ci−1di−1 + bi−1) di;16

/* Fi ∈ KN×N */

Vi+1 ← aidi + ViDi+1 + Vi−1Ei+1 + Vi−2Fi+1;17

ai+1 ← AVi+1;18

bi+1 ← VT
i+1ai+1;19

ci+1 ← aT
i+1ai+1;20

� Compute Winv
i+1 and di+1 = Si+1S

T
i+1 from di and bi+1;21

X← X + Vi+1W
inv
i=1V

T
i+1Y ; /* Derived from (3.21) */22

i ← i + 1;23

endw24

end25

58 Chapter 3. Computing perfect squares with matrix equations

• Line 21: this step requires at most complexity O(N2) which is relatively
small, as will be shown in the next section.

• Line 17: there exist four inner products between n × N and N × N
matrices as well as four corresponding additions among them. The
additions can be done easily with O(n) complexity. Meanwhile, each
inner product can be done also with O(n) complexity by dividing the
longer matrix into blocks of N ×N matrices and multiply each by the
targeting N ×N matrix using Coppersmith’s method with complexity
O(N) and thus in overall will be O(N(n/N)) = O(n).

• Line 22: the computation of VT
i+1Y and Vi+1W

inv
i+1 would both require

O(n) as well as their final multiplication. So the total running time of
this step would be O(n).

The above points indicate that the complexity at each iteration is O(dn).
As claimed by Montgomery [18, p. 118], the conjectured number of iterations
is at most O(n/N) for if the input matrix Y is completely random. Combined
these two results, the blocked version of Lanczos’s algorithm has complexity
O(dn/N), which is N times faster than Gaussian elimination. The main
advantage in this algorithm is the use of simultaneous binary operations in
N -bit computer since the computation uses as much time as would be done
for 1 bit, whereas the method specified in the GE cannot exploit this idea
with large and sparse matrices.

3.7 Constraints of Block Lanczos’s algorithm

In order to select Si and Winv
i so that the condition of Proposition 3.6.5 is

satisfied, a separate algorithm is invoked which acts as a closed procedure
in the implementation. It is necessary that the following compact result is
employed in understanding this selection process:

Proposition 3.7.1. Given the sequence of Vi computed as in Algorithm
3.6.1, then for every Vi, all of its columns which were not included in Wi

appear in Vi+1 at the exact column positions.

Proof. Let Si be the selecting matrix for Wi, then it’s clear that SiS
T
i have

similar structure to IN , except that some coefficients on the diagonal are
0 as they stand for columns of Vi not selected to be included in Wi in
the previous iteration. Considering the formula used to compute Vi+1 in
Proposition 3.6.6, the following comments can be made for the four terms:

Chapter 3. Computing perfect squares with matrix equations 59

• Term 1,3,4: Since each of these terms contains SiS
T
i , all columns whose

positions match those columns not selected in the previous iteration are
0 vectors.

• Term 2: It is easy to check that the multiplication SiXST
i would re-

sult in an N × N matrix with 0 column vectors at positions match
with columns not selected into Wi from Vi. Thus it is also true for
Winv

i by assumption, and hence ensures that in the diagonal of Di+1,
all positions indicating columns not selected will have value of 1. By
multiplying Di+1 by Vi, all the columns not selected in Vi now appear
in the second term at their exact positions.

This implies that the sum of these terms, i.e., Vi+1 contains all the
columns not selected in the previous iteration, at their exact positions.

Another important result is required to make sure that the selection pro-
cess successfully finds Wi which is A-invertible. This result was explicitly
proved in [24, Lemma 3.3.1], while its idea can be summarized as below:

Proposition 3.7.2. Let V be a symmetric matrix of size N × N with r =
Rank(V). Let V′ be a matrix formed by selecting any r linearly independent
rows of V. Let V′′ be a matrix formed by selecting some columns of V′ whose
positions are the same with positions of rows selected by V′ from V. Then
V′′ is invertible.

Thus if V′′ = WT
i AWi is found from V = VT

i AVi, then the condition is
satisfied. In order to select a set of columns in Vi which form an A-invertible
matrix, an implicit version of the GE is in used to reduce VT

i AVi and select
the pivot columns (rows) as the desired choices. In addition, since there
must be an assurance that all previously not selected columns must now
be selected as well, these columns are switched to the beginning of VT

i AVi

so that during the reduction process, they will be chosen as pivot columns.
Proposed by Montgomery [18, p. 116], the method can be summarized as in
Algorithm 3.7.1.

To sum up, all the components required by Block Lanczos have so far
been revealed. Note that from the beginning a symmetric matrix A and a
matrix Y also need to be initialized. As previously mentioned, the matrix A
can be of the form BTB. To form Y for Algorithm 3.6.1, the algorithm may
start by randomly initializing a matrix Y0 of binary coefficients. Then, by
letting Y = AY0, this matrix is ready as the appropriate input, so that the
solution X satisfies that AX = AY0. Note however that the terminating
condition for Algorithm 3.6.1 is VT

i AVi = 0, hence it might happen that the

60 Chapter 3. Computing perfect squares with matrix equations

Algorithm 3.7.1: SelectWinvAndSi

Input: Matrix bi ∈ KN×N in Algorithm 3.6.1, Si−1S
T
i−1

Output: SiS
T
i , Winv

i

begin1

M← (bi|IN) ; /* Join IN to the left of b */2

� Switch columns of M whose positions correspond to zero3

columns in Si−1S
T
i−1 to the beginning of M;

ss← 0 ; /* Initialize SiS
T
i ∈ KN×N */4

for j ← 1 to N do5

k ← j;6

while k ≤ N do7

if M[k, j] �= 0 then � Break this loop;8

k ← k + 1;9

endw10

if k ≤ N then /* If M[k, j] �= 0 */11

� Exchange row j and k of M;12

ss[j, j] = 1 ; /* Add column j of Vi into Wi */13

� Divide row j of M by M[j, j] ; /* Omit if use F2 */14

/* Zero the rest of column j */

� Reduce rows of M by row j;15

else /* If column j of M is a zero vector */16

k ← j;17

while k ≤ N do18

if M[k, j + N] �= 0 then � Break this loop;19

k ← k + 1;20

endw21

if k ≤ N then /* Assert that M[k, j + N] �= 0 */22

� Exchange row j and k of M;23

/* Zero the rest of column j + N */

� Reduce rows of M by row j;24

endif25

endif26

endfor27

Winv
i ← Right half of M;28

SiS
T
i ← ss;29

end30

Chapter 3. Computing perfect squares with matrix equations 61

algorithm terminates with non-zero value of Vi, and thus AX �= AY0. How-
ever, for a reason described in [18, p. 114], the vectors contained in X−Y0

and the last Vi are in the nullspace of A. Thus, if we let Z = (X−Y0|Vi),
and use the Gaussian elimination to find the nullspace U of BZ, then ZU is
the desired solution. The main algorithm for solving the matrix equation is
then followed in Algorithm 3.7.2.

Algorithm 3.7.2: FindDependencies

Input: Matrix B ∈ Fm×n
2 representing smooth values in S with size n

Output: A matrix X0 ∈ Fm×N
2 as solutions

begin1

A← BTB ; /* A ∈ Fn×n
2 */2

Y0 ← Random(0, 1) ; /* Y0 ∈ Fn×N
2 */3

Y← AY0 ; /* Y ∈ Fn×N
2 */4

(X,Vi) ← BlockLanczos(Y,A) ; /* X, Vi ∈ Fn×N
2 */5

Z← (X−Y0)|Vi ; /* Z ∈ Fn×2N
2 */6

U← Kernel(BZ) ; /* U ∈ Fm×k
2 where k < 2N */7

X0 ← ZU ; /* X0 ∈ Fn×k
2 */8

end9

Chapter 4

Extracting square roots in Z

Following the matrix equation, a number of pairs (a, b) remain as composi-
tions of the final perfect squares of x and y mentioned in the beginning. As
for the rational side, computing the square root is just a matter of simple
efforts since prime factorization of each a + bm is well known, and so is their
product:

y2 = f ′(m)
∏

(a,b)∈U

a + bm (4.1)

By dividing the total appearance of each p ∈ F in y2 by 2, the final product
of these primes along with their exponents would easily results in y. The
remaining task is now to deal with algebraic numbers a + bθ and their prod-
uct. In fact, this task poses a question in the performance of the GNFS since
careless consideration would make its computation as slow as the whole algo-
rithm. Indeed, an intuitive way is to continuously taking polynomial multi-
plication of a + bθ modulo f(θ). Then one may try to factor this polynomial
and map it to Z using the homomorphism φ used in Proposition 2.1.1. This
surely gives an independent perfect square in Z. However, since there might
be a large number of pairs (a, b) appeared in the set U that forms the alge-
braic square, coefficients of the polynomial in θ representing this square may
reach several millions of digits, making the computation practically impossi-
ble.

Alternatively, another strategy is to find the representations in Z[θ] of all
the primes in the algebraic factor base A and compute the square root in the
same way as with rational square root. This method involves finding exact
(q, s) such that q + sθ represent the primes (p, r) ∈ A. Once again, this does
not seem to be feasible due to the large amount of prime ideals involved,
and the computing technique that leads to their complex forms has yet been

63

64 Chapter 4. Extracting square roots in Z

optimized.

As suggested by J.M. Couveignes [7], an acceptable solution was intro-
duced that benefits from the Chinese remainder theorem. In principle, the
method struggles to find images of the square root in many different finite
fields Fp for a number of primes p. After enough primes have been collected
such that their product P is greater than the actual square root, the square
can be computed indirectly in Z/PZ with conventional method. With this
description, the complexity of the square root algorithm depends on the time
taken for multiplying #U-bit numbers repeating ln(#U) number of times [14,
pp. 100-101]. With U of large size such as 10 millions, this method is once
again prohibitive. In addition, Couveignes’s algorithm also requires that the
original polynomial f(x) in use is monic with odd degree. So far, this does
not cause any trouble with the principle of the GNFS, but it would prevent
further improvements to speed up the whole algorithm.

In what follows a significantly better idea will be represented whose cre-
ation named after P. Montgomery [17], with slight modification by Phong
Nguyen [21]. Beside its great improvement over the performance, this method
makes no assumption on the polynomial f(x) except its irreducibility. In
other words, f(x) may also be non-monic with even degree. This gives rise
to the improvement of the whole GNFS algorithm, as can be seen afterward.

4.1 A modification to the algebraic context

In the description of the mathematical background for the GNFS, it is clear
that the reason for requiring the base polynomial f(x) to be monic is to make
sure that its root θ belongs to O, the ring of algebraic integers. This can be
verified from the concept of O in Definition 2.2.1. Given this condition, the
ring Z[θ] is sufficiently an order in O and thus secures a number of operations
on its scope, especially for Proposition 2.5.4.

On the other hand, if a non-monic polynomial f(x) is introduced, this
is not necessarily the case. In other words, those theorems appeared in
Chapter 2 may no longer hold true, and hence a question on the probability
of success of the algorithm should be raised. In order to cope with this
change, instead of relying on Z[θ], it is necessary a different ring may be
used as a replacement. For this reason, θ should also be replaced with a new
generation:

Chapter 4. Extracting square roots in Z 65

Proposition 4.1.1. Let f(x) be an irreducible polynomial of degree d with
integer coefficients. Let θ be one of its complex roots, then there exists an
algebraic integer θ̂ of the form kdθ where kd is the highest degree coefficient
of f(x).

Proof. The proof can be facilitated with a monic irreducible polynomial
T (x) = kd−1

d f(x/kd). It is obvious that θ̂ is a root of T (x), and hence

θ̂ ∈ O ⊂ Q(θ̂) = Q(θ) since T (x) is monic irreducible with integer coeffi-
cients.

Even though θ̂ satisfies that Z[θ̂] is a ring in O, there is no evidence that it
is qualified for Proposition 2.5.3, i.e., having all the first degree prime ideals
defined by (p, r) pairs. Note that for the reason described in Proposition
2.4.3, if a pair (a, b) satisfies that p|N(a − bθ)∗, then p � b. This is however
not necessarily the case when f(x) is non-monic. Indeed, considering the
situation in which p|b and p|kd:

N(a− bθ) = bdf(
a

b
)

= bd(kd
ad

bd
+ kd−1

ad−1

bd−1
+ · · ·+ k1

a

b
+ k0 (4.2)

= kda
d + kd−1a

d−1b + · · ·+ k1abd−1 + k0b
d

= p
kd

p
ad + p

b

p
M = pN

Thus, even if p|N(a− bθ), there is no such r that a ≡ −br (mod p), or that r
is categorized as∞ since b ≡ −a/r ≡ 0 (mod p). In order to take (p,∞) into
considerations, a solution is to make use of a larger ring [14, pp. 88-89]that
contains Z[θ̂], as shown below:

Proposition 4.1.2. Let θ be a complex root of a polynomial with integer
coefficients f(x). Let βi =

∑d−i−1
j=0 kj+i+1θ

j where kj are coefficients of f(x).

Let A = Z +
∑d−2

i=0 Zβi, then A is an order in Q(θ) satisfying Z[θ̂] ⊂ A =
Z[θ] ∩ Z[θ−1].

Due to this special construction, the order A clearly satisfies the require-
ment in Proposition 2.5.3, as the following result has shown:

Proposition 4.1.3. Let A be an order of a field K defined in Proposition
4.1.2. Let R(p) be the set of r ∈ Z/pZ for which f(r) ≡ 0 (mod p), together

∗Since N(a − bθ) has simpler form than N(a + bθ), it is more convenient to use b as
−b, and still get the same norm.

66 Chapter 4. Extracting square roots in Z

with ∞ if p|kd. Then the set of prime ideals p of A is in bijective correspon-
dence with the set of pairs (p, r) for r ∈ R(p). Moreover, for each a− bθ, the
computation of lp in Proposition 2.5.4 can be modified to what follows:

lp(a− bθ) =

{
ep,r(a− bθ) if r �= ∞
ep,r(a− bθ)− vp(kd) if r = ∞

where vp(x) stands for the p-adic valuation†of x and ep,r(a−bθ) = vp(b
df(a/b)).

Proof. For r �= ∞, it is clear that every element of p is divisible by p, and
hence they all belong to the kernel of the mapping ψp,r : Z[θ] → Z/pZ
that sends θ to r. Since p ∈ A, then p = A ∩ ker(ψp,r) is indeed a first
degree prime ideal of A. The same can be applied to r = ∞, except that
ψp,∞ : Z[θ−1] → Z/pZ is used that sends θ−1 to r−1, i.e., 0. Thus, the
first part of the proposition holds. Considering the computation of lp, it is

necessary to recall the norm formula, with respect to the ring Z[θ̂]:

N(a− bθ) = N

(
a− b

θ̂

kd

)

=

(
b

kd

)d

T

(
akd

b

)

=

(
b

kd

)d(
adkd

d

bd
+ kd−1

ad−1kd−1
d

bd−1
+ kd−2kd

ad−1kd−1
d

bd−1+
· · ·+ k0k

d−1
d

)

= ad + kd−1a
d−1 b

kd
+ kd−2a

d−2 b2

kd
+ · · ·+ k0

bd

kd

=
kda

d + kd−1a
d−1b + kd−2a

d−2b2 + · · ·+ k0b
d

kd

=
1

kd
bdf

(a

b

)

Since lp(a− bθ) = vp(N(a− bθ)), the proof is complete as one computes the
p-adic valuation of both sides.

In this case, if f(x) of non-monic form is to be used throughout the
GNFS, then it is crucial to add also a number of pairs (p,∞) to the algebraic
factor base A and recompute lp from ep,∞ before moving to solving the matrix
equation. On the other hand, since all of the orders in use so far are neither

†vp(x) is simply the number of p as factors in x. This has the same meaning when using
the concept of p-adic valuation of an ideal, which is also called the ramification index.

Chapter 4. Extracting square roots in Z 67

PID nor UFD, there are chances that even if the norm of a − bθ has been
completely factorized, the ideal generating from it is divisible by other prime
ideals not included in the prime factorization of N(a − bθ). In such cases,
these unknown prime ideals are called exceptional prime ideals. As indirectly
shown by [21, Theorem 1], all the prime ideals lying above a prime p dividing
[O : A]‡ would necessarily be treated as exceptional ideals.

Thus, after receiving a smooth algebraic integer a−bθ, it is also crucial to
find the valuation of each exceptional prime ideal p at 〈a− bθ〉, and add them
as entries to the matrix equation. Note that by this definition, some “good”
first degree prime ideals already in the algebraic factor base A may appeared
as exceptional just because they lie above a prime p dividing [O : A], and
without careful consideration, some prime ideals might occur twice in the
factorization of the ideal generated by an algebraic integer a − bθ. While
details of this process is beyond this context, a good illustration of dealing
with exceptional primes is presented with the final example in Chapter 7.

4.2 Square root algorithm

Since most computations are lifted from algebraic integers to their corre-
sponding principal ideals, the method described in this algorithm also turns
the problem of factoring an algebraic integer to decomposing prime ideals of
an ideal. Therefore, it is important to define some fractional concepts of an
ideal I for all the prime ideals used in the factor bases, as what follows:

Numer(I) = p
max(vp0 (I),0)
0 p

max(vp1 (I),0)
1 · · · pmax(vpk

(I),0)

k =
∏

vpi(I)>0

p
vpi (I)

i

Denom(I) = p
max(−vp0 (I),0)
0 p

max(−vp1 (I),0)
1 · · ·pmax(−vpk

(I),0)

k =
∏

vpi
(I)<0

p
−vpi(I)

i

Of crucial importance, it is obvious that I = Numer(I)/Denom(I) and
N(I) = N(Numer(I))/N(Denom(I)). Let γ be the perfect square generated
by compositing all algebraic integers a− bθ ∈ U , the algorithm finds

√
γ by

factoring the corresponding ideal 〈γ〉 to get
√〈γ〉 and approximate it back

to
√

γ. The algorithm involves the following steps, as summarized in [21, pp.
5-6]:

• Try to simplify the prime composition of Numer(〈γ〉) and Denom(〈γ〉)
by deciding whether to put each ideal 〈a− bθ〉 to the numerator (resp.

‡[O : A] indicates the degree of O as the vector space over A, i.e., the dimension of the
vector space O over A.

68 Chapter 4. Extracting square roots in Z

denominator) of 〈γ〉 so as to cancel some prime ideals appeared in
denominator (resp. numerator).

• Let γ0 be the simplified version of γ, start to further reduce γ0 using an
iterative approach until it is computable using the Chinese remainder
theorem. In particular, at each step l, try to find sl ∈ {−1, +1} and
δl ∈ O such that γl = γl−1δ

−2sl
l is somehow less complicated than γl−1.

Record each δl as the approximation at each step l so that they can be
used in the later stage to form the square root.

• Let α be the final version of γL which is assumed to be simple enough
so that it is possible to apply Cipolla’s algorithm to find

√
α. Thus,

the square root of γ can be obtained as follows:

√
γ =

√
α

L∏
l=0

δsl
l

As briefly mentioned, there has been a slight improvement to the original
algorithm by Montgomery. In fact, this change relates to the way how opera-
tions among ideals are performed, including addition, multiplication, etc. In
principle, the best method for doing computation in O is to find its basis as
vectors in Z[θ̂] and perform all operations on these vectors. As suggested by
Montgomery [17, p. 10], the power basis {1, θ̂, θ̂2, . . . , θ̂d−1} is used for this
purpose. In this modification however, it is better to use an integral basis
of O, that is, the set of d linearly independent vectors, under the form of
polynomials in θ̂ with rational coefficients. In overall, the whole algorithm
can be summarized as in Algorithm 4.2.1.

4.3 Computing the integral basis of O

The idea of constructing the integral basis of O was based on the fact that
there exists a method to enlarge an order finitely many times so that it
finally becomes the order O. During each enlargement, a new integral basis
is computed to facilitate the next iteration, and after the last step, the basis
obtained is supposed to successfully spans O. Before diving into this method,
it is necessary to recall some characteristics of O as well as rings closed to O
[5, p. 303]:

Proposition 4.3.1. Let O be the ring of algebraic integers in the field K for
some θ ∈ O. Then R ⊂ O for any other order R ⊂ Q(θ). In this case O is
called the maximal order of K.

Chapter 4. Extracting square roots in Z 69

Algorithm 4.2.1: SquareRoot

Input: A set U of pair (a, b).
Output: The square root of γ =

∏
(a,b)∈U (a− bθ).

begin1

ComputeIntegralBasis(f(x)) ; /* See §4.3 */2

γ0 ← 1;3

foreach (a, b) ∈ U do4

/* Use greedy algorithm to assess this */

if Numer(〈γ0〉)“>”Denom(〈γ0〉) then5

γ0 ← γ0(a− bθ)−1;6

else7

γ0 ← γ0(a− bθ);8

endif9

endfch10

Approx ← 1;11

while γl is complex do /* For this loop, see §4.4 */12

if Numer(〈γl〉)“>”Denom(〈γl〉) then13

sl ← 1 ; /* Simplifying Numer(〈γl〉) */14

else15

sl ← −1 ; /* Simplifying Denom(〈γl〉) */16

endif17

δl ← SelectGoodDelta(γl, sl);18

γl+1 ← γlδ
−2sl
l ;19

Approx ← Approx · δsl
l ;20

l ← l + 1;21

endw22

α ← γl;23

Sqrt← FindSquareRoot(α);24

Sqrt← Sqrt · Approx;25

end26

70 Chapter 4. Extracting square roots in Z

Definition 4.3.1. Let O be an order in a number field K. Let p be a prime
number in Z. If p � [O : O], then O is called p-maximal. Furthermore, the
p-radical Ip of O can be uniquely defined as:

Ip = {x ∈ O|∃m ≥ 1 such that xm ∈ pO}
The heart of the Round 2 algorithm, as originated by Pohst and Zassen-

haus, is followed by an important observation, as described below:

Proposition 4.3.2. Let O be an order in a number field K. Let p be prime
number in Z. Let O′ = {x ∈ K|xIp ⊂ Ip}. If O is p-maximal, then O = O′,
otherwise, O � O′ and p|[O′ : O]|pm for some m ∈ Z+.

While the proof is given along the lines of [5, pp. 304-305], the idea is
clear on how the algorithm proceeds on enlarging some smaller ring to achieve
O. Indeed, note that the ring O′ in the above proposition is also an order,
and the method may start with the ring Z[θ̂] since its integral basis is well
known, as represented by the power basis in θ̂ up to the exponent d− 1. By
iteratively enlarging Z[θ̂], the algorithm tries to alter Z[θ̂] so that it becomes
p-maximal for each prime number in Z. After finitely many steps, it can be
sure that the ring O derived from Z[θ̂] is p-maximal for every prime p, and
thus O = O, along with its integral basis growing at every iteration.

In fact, the original ring Z[θ̂] is already p-maximal for most primes p.
Therefore, it is only necessary to find the remaining primes, and try to enlarge
this ring over them to reach the maximal order O. For this reason, the primes
p which Z[θ̂] is yet p-maximal can be obtained from the following results [5,
Theorem 4.4.4]:

Proposition 4.3.3. Let θ̂ be a complex root of a monic irreducible polynomial
T (x) with integer coefficients. Let f = [O : Z[θ̂]], then

disc(T) = disc(Q(θ̂))f 2 (4.3)

where disc(T)§and disc(Q(θ̂)) stand for the discriminants of T (x) and Q(θ̂),
respectively.

Thus, if the value of disc(T) is known, it is then simple to find the set
of primes p dividing [O : Z[θ̂]] by seeking for primes p such that p2|disc(T).
Note that however the converse of this is not true, that is, if p2|disc(T), it

§The discriminant of T (x) is defined as (−1)d(d−1)/2R(T, T ′)/kd, where T ′(x) is the
derivative of T (x), as well as R(A, B) is referred as the resultant of A and B. See [5, p.
119] for details.

Chapter 4. Extracting square roots in Z 71

is not always true that p|[O : Z[θ̂]]. In such cases, the enlargement process
can still be tried over these primes with no result or the Dedekind test might
be performed before any enlargement to check for the divisibility, as can be
seen in [5, pp. 305-308]. Nevertheless, due to the fact that the list of primes
p above is relatively small, whether or not the Dedekind’s test is used, the
performance of this strategy will not be remarkably affected.

From the other perspective, it is also important to define a mean of op-
erations among the algebraic structures within O which is indispensable for
this method to operate. Indeed, note that since every well defined structure
within our consideration has a unique basis, the idea is to somehow use them
to identify each structure, represented under some computable forms. This
leads to the use of matrices of Hermite Normal Form (HNF):

Definition 4.3.2. Let M be a matrix in Km×n. M is said to be of HNF
form if there exists an r ≤ n such that

1. For r + 1 ≤ j ≤ n, mj−r,j ≥ 1, mi,j = 0 if i > j − r and 0 ≤ mk−r,j <
mk−r,k if k < j.

2. For 1 ≤ j ≤ r and 1 ≤ i ≤ m, mi,j = 0.

Visually speaking, one may think of an HNF matrix as an upper trian-
gular matrix if all of its zero columns and rows are removed, or that this is
always true if the matrix is square. This remaining part of the HNF matrix
gives rise to the representation of the vectors that span each algebraic struc-
ture. In this context, it is sufficient to use the concept of module¶ in the
number field K, as it is common to all structures used in this method. The
following result confirms the use of HNF matrices on representing modules:

Proposition 4.3.4. Let α1, α2, . . . , αn be n Z-linearly independent elements
of the number field K that spans a module R. Let M be a module in K, then
there exists a unique basis ω1, ω2, . . . , ωn of M of the form:

ωi =
1

d

(
n∑

i=1

wi,jαi

)

where d is the smallest positive integer such that dωi ∈ Z[θ̂]. Furthermore,
the matrix W formed by wi,j is in HNF form, and hence together with d,
they uniquely identify the module M .

¶A module M in K is a finitely generated Z−submodule of K with maximal rank, i.e.,
rank(M) = deg(K).

72 Chapter 4. Extracting square roots in Z

In this case, since R = Z[θ̂] and αi = θ̂i−1, each ωi is a polynomial in θ̂
with coefficients represented by the i-th column of the matrix W. With this
support, one can start computing for each prime p the p-maximal order O′
containing Z[θ̂]. To compute O′ as in Proposition 4.3.2, it is required that
the p-radical of Z[θ̂] be found, along with a pair (W, d) representing it. The
radical can be found by an observation as follows [5, Lemma 6.1.6]:

Proposition 4.3.5. Let O be an order in a number field K, let R = O/pO,
then if pj ≥ n for some integer j and the degree n of K, then the radical of
R is the kernel of the map x→ xpj

.

Assume that the ring O has basis ω1, ω2, . . . , ωn, then ω1, ω2, . . . , ωn
‖ will

apparently be the basis of R. We then attempt to find ai,k such that

βk = ωpj

k =

n∑
i=1

ai,kωi (4.4)

Since ωk are linearly independent, then so are βk. By forming the matrix
A containing ai,k and change it into HNF form, the basis for the mapping
above is thus revealed. Then, finding the radical Ip of R is only a matter of
computing the kernel of the matrix A, appeared as a matrix D representing a
basis of j elements σ1, . . . , σj. Then, note that it was agreed from the begin-
ning that every module is represented in its HNF form, this must be applied
also to Ip. That being said, D must be converted into its HNF form, and in
order to do so, it must be supplemented so that it would have more columns
than rows before the conversion process takes place. This supplement can be
done by joining the basis of Ip with that of pO, i.e., σ1, . . . , σj, pω1, . . . , pωn.

With the p-radical Ip of O, or more precisely, the integral basis ψ1, . . . , ψn

of Ip, the basis ofO′ can be easily computed, according to the following result:

Proposition 4.3.6. Let O be an order in the number field K. Let O′ be the
order as defined in Proposition 4.3.2. Let U be the kernel of the mapping
α → (β → αβ) from O to End(Ip/pIp), the set of endomorphisms in Ip/pIp.
Then O′ = 1

p
U .

Since Ip is known from the previous step, the basis for Ip/pIp can be
trivially produced as the image of the basis of Ip in Ip/pIp. Similar to the

‖ωi is simply ωi (mod p). The same notation may be applied to other categories such
as matrices, coefficients, modules, etc.

Chapter 4. Extracting square roots in Z 73

previous one, this step begins by computing the basis for the mapping de-
scribed above, represented by a matrix B. This matrix is of size n2 × n,
where its coefficients B(i,j),ksatisfy that:

ωkψj ≡
n∑

i=1

B(i,j),kψi (mod p) (4.5)

By finding the kernel of B, the basis of U is thus revealed. The integral
basis of U can be obtained in the same way by supplementing it with pO.
In practice, a reasonable version of the Round 2 algorithm was successfully
included in a state-of-the-art implementation of the NFS community, namely
the GGNFS. Nevertheless, this implementation can be summarized as in Al-
gorithm 4.3.1.

Algorithm 4.3.1: Round2Zassenhaus

Input: a monic irreducible polynomial T (x) of degree d and root θ̂
Output: the integral basis of O in Q(θ̂)
begin1

� Compute the discriminant dT of T (x);2

� Compute a set P of primes p where p2|dT ;3

WO← Id ; /* Set O = Z[θ̂] with HNF basis WO */4

foreach p ∈ P do5

WO′ ← Id ; /* Set O′ = Z[θ̂] with HNF basis WO′ */6

� Compute least j ∈ Z+ such that pj > d;7

repeat8

WO ←WO′ ; /* Set O to previous enlargement */9

� Compute A of coefficients ai,k as in (4.4);10

D← Kernel(A);11

D← (D|pWO) ; /* Supplement Ip with pO */12

D← HNF (D) (mod p) ; /* Get basis ψi of Ip/pIp */13

� Compute B of coefficients B(i,j),k as in (4.5);14

B← Kernel(B) (mod p) ; /* Get U */15

B← (B|pWO) ; /* Supplement U with pO */16

B← HNF (B) ; /* Get U */17

WO′ ← B/p ; /* Get O′ */18

until WO = WO′ /* Until O is p-maximal */;19

WO ←WO + WO /* Enlarge O by p-maximal O */20

endfch21

end22

74 Chapter 4. Extracting square roots in Z

4.4 Selecting good approximations for γ

As mentioned in the main algorithm, at each step of the approximation, a
value δl must be found so that once its square is multiplied with γl, the result
would be “simpler”. In term of γl itself, this idea is not clear on how the
simplicity can be recognized and assessed. However, such measurement can
be applied to the ideal it generates, i.e., 〈γl〉. Indeed, considering the notions
of Numer(〈γl〉) and Denom(〈γl〉), this measurement process turns into find-
ing δl such that the numerator and denominator of the ideal generated by
γlδ

−2sl
l would have simpler prime decompositions. Therefore, at each step l

the algorithm needs to cancel out some prime factors in either the numera-
tor or denominator of 〈γl〉 by multiplying them to the opposite part of the
fractions. These extra multiplications are then recorded as approximation to
the original ideal, i.e., the actual perfect square in Z[θ].

Without loss of generality it can be assumed that at step l the numera-
tor HN = Numer(〈γl〉) is chosen to be simplified as it contains more prime
factors than Denom(〈γl〉). With some predefined limit LLLmax, the method
would try to find a largest possible ideal Il with I2

l dividing HN and N(Il)
very close to LLLmax. Since Il consists of some prime factors in HN , mul-
tiplying it with the denominator will result in a simpler numerator. The
problem is that if the manipulation is done by ideal computation, an obsta-
cle arises when trying to find γl+1 generating it and record the approximation.

For this reason, instead of updating 〈γl〉 to 〈γl+1〉 and find γl+1, it is safer
to update γl to γl+1 and find its corresponding ideal 〈γl+1〉. This is where δl

comes in as a way of representing Il. Note however that, even if δl is chosen
from Il, there is no guarantee that δl would only contain prime factors in Il,
and hence it may produces more changes than that expected by Il. Due to
this obstruction, δl ∈ Il must be computed so that it is as small as possible,
i.e., δl such that N(〈δl〉 /Il) is of minimum value, making 〈δl〉 as close to Il

as possible. This is equal to the problem of finding short elements in Il and
hence triggers the use of the lattice reduction algorithm, since an ideal is also
a lattice∗∗.

At the first stage, once an ideal Il is chosen for conditions described from
the beginning, it is important that its HNF identification matrix is formed
so that its integral basis is known. The lattice reduction algorithm must

∗∗See the next section for clear concepts of a lattice and how the lattice reduction
technique operates.

Chapter 4. Extracting square roots in Z 75

then be invoked to reduced this basis to a basis where elements are almost
pairwise orthogonal. Let this basis of Il be μ1, . . . , μn and vi,j such that

μi =

n∑
j=1

vi,jωj (4.6)

Denoted by Δ(K) the discriminant of the field K = Q(θ̂) and σk(γl) the
k-th conjugate (embedding) of γl as defined in Proposition 2.4.1. Assume
that these factors are well known from the previous approximation, some
other local constants need to be computed. These in turn are:

cd =
LLLmax

N(Il)

√
|NK(γl)|sl

|Δ(K)|
λk =

c

|σk(γl)|sl/2

Given these values and the composition of the basis in (4.6), for each of
the μi, one can construct a unique column vector of the form

Ωμi = 〈vi,1, vi,2, . . . , vi,n, λ1σ1(μi), λ2σ2(μi), . . . , λnσn(μi)〉

The n such column vectors result in a 2n×n matrix F satisfying the following
result:

Proposition 4.4.1. Let F be the 2n× n matrix formed by joining together
the transformations Ωμi for i = 1, n. Then this matrix satisfies:

1. The determinant of the first n rows of F is in absolute value equal to
|N(Il)|.

2. The determinant of the last n rows of F is in absolute value equal to
LLLmax.

The second lattice reducing process can then be applied to reduce the
matrix F so as to get shorter vectors in the first d columns of F. As the final
stage, δl can be chosen among the vectors representing these columns so that
its magnitude |δl| is of minimum value, which is possibly the best value that
can be chosen. In general, this shortest vector is normally located in the first
column of the matrix due to the nature of the lattice reduction technique.
Despite this effort, to make sure that the algorithm works correctly, it is
still important to check whether δl contains primes not in Ip. If this is the
case, let H be the ideal consisting of primes in 〈δl〉 but Ip, and so the ideal

76 Chapter 4. Extracting square roots in Z

representing γl+1 must be changed by H in the same manner. In other words,
let Gl be the ideal generated from γl, then

γl+1 = γlδ
−2sl ⇐⇒ Gl+1 =

(
Il

H

)−2sl

Gl

On termination of this phase, a condition can be specified which requires
that the parameter C(Gl) = N(Numer(Gl))N(Denom(Gl)) as well as its
two factors are close to 1. This makes sure that γl will be extremely simple,
and hence allows the Chinese remainder theorem to easily compute its coeffi-
cients. In practice, as shown in [21, p. 11], the number of iterations required
before achieving these conditions is at most 2�log2C(

√〈γ〉)� which can be
easily computed from the beginning. To give an example implementation,
Algorithm 4.4.1 explains the tasks required for completing the approximating
phase.

Remark. As suggested by Nguyen in [21, pp. 11,13-17], the value of LLLmax

can be determined from the beginning so that it is much larger than a con-
stant C, as described in the following proposition:

Proposition 4.4.2. Let Il and δl be the corresponding components at any
step l of the approximation phase, then there exist a constant C depending
only on the underlying number field K such that:

|NK(δl)| ≤ C ×N(Il) (4.7)

In fact, the value of the constant C can be computed as follows:

C1 = max1≤j≤n

√√√√ n∑
i=1

|σj(ωi)|2

C2 = 2
n(n−1)

4 nn2n+1

C3 =
√

1 + nC1

C = 2
n(n−1)

2 max(1, Cn
1)C2C

n
3

where n is the degree of K, or more deterministically, the degree of the base
polynomial f(x) chosen at the beginning of the sieving algorithm. Also,
considering this square root approximation, it is better to use addition with
logarithm than multiplication with power as illustrated in the pseudocode.
This is to prevent any problems with overflows, memory consumption, and
performance constraints required by the computations. In terms of time

Chapter 4. Extracting square roots in Z 77

Algorithm 4.4.1: SelectApproximation

Input: Set U where γ =
∏

(a,b)∈U (a− bθ), HNF basis WO

Output: α simplified from γ
begin1

G0 ← 〈γ〉;2

l ← 0;3

while C(Gl) > 1 or N(Numer(Gl)) > 1 or N(Denom(Gl)) > 14

do
if N(Numer(Gl) > N(Denom(Gl) then5

sl ← 1;6

M← Numer(Gl);7

else8

sl ← −1;9

M← Denom(Gl);10

endif11

c ← n

√
LLLmax

N(Il)

√
|NK(γl)|sl

|Δ(K)| ;
12

for k ← 1 to n do13

λk ← c
|σk(γl)|sl/2 ;14

endfor15

Il ← Z[θ̂] ; /* Use In for WIl
*/16

while N(Il) < LLLmax do /* Select large Il */17

� Select p2k in Numer(Gl);18

Il ← Il · p2k;19

endw20

{μi} ← LLLReduce(Il) ; /* See §4.5 */21

� Compute F as in Proposition 4.4.1;22

F← LLLReduce(F) ; /* See §4.5 */23

� Let F be its first d rows;24

δl ←∞;25

for i ← 1 to n do /* Select smallest δl */26

δl ←Min(δl,Fi);27

endfor28

H ← 〈δl〉
Il

;29

Gl+1 ←
(

Il

H

)−2sl
Gl;30

γl+1 ← γlδ
−2sl
l ;31

l ← l + 1;32

endw33

α ← γl;34

end35

78 Chapter 4. Extracting square roots in Z

complexity, it is easy to see that this step does not take much time since
the LLL reduction is applied only for matrices of trivial size 2n × n. In
the worst case, the number of steps required before those conditions with
C(Gl), N(Numer(Gl)), and N(Denom(Gl)) are matched may reach O(#U)
at maximum, and even when running within one computer, this is still ac-
ceptable.

4.5 Lattice reduction with the LLL algorithm

Named after A.K. Lenstra, H.W. Lenstra, and L. Lovasz, the LLL reduction
algorithm was introduced in 1982 as a breakthrough for computing lattice
reduced bases. As an application to the square root approximation process
above, this algorithm helps in finding the shortest possible vector that closely
acts as a generator for the whole lattice, with minor difference. To briefly
sketch this idea, it is worth to recall the core concept of lattice, as can be
seen in the following definitions [5, pp.79-81]:

Definition 4.5.1. Let V be a vector space over some field K. Let q be a
mapping from V to K such that for all λ ∈ K and x, x′, y ∈ V :

1. q(λ · x) = λ2q(x)

2. Let b(x, y) = 1
2
(q(x+y)−q(x)−q(y)), then b(x+x′, y) = b(x, y)+b(x′, y)

and b(λ · x, y) = λb(x, y)

The map q is called a quadratic form.

Definition 4.5.2. A lattice L is a free Z-module of finite rank together with
a quadratic form q on L⊗ R such that q(x) > 0 ∀x ∈ L

In order to geometrically represent a lattice (L, q), it is sufficient to con-
sider it as a discrete subgroup of rank n of the Euclidean vector space L⊗R.
In other words, let {bi} be a Z-basis of L, then

L = Zb1 + Zb2 + · · ·+ Zbn

Given the mapping q such that b(bi, bj) = bi · bj , a matrix Q can be formed
with Qi,j = b(bi, bj) such that for each x ∈ L, an equivalence can be obtained
as follows:

x =

n∑
i=1

xibi ⇐⇒ q(x) =
∑

1≤i,j≤n

Qi,jxixj

While the matrix Q uniquely identifies the quadratic form q with respect
to the given basis {bi} of L, it is also called the Gram matrix of the {bi}

Chapter 4. Extracting square roots in Z 79

where
√

det(Q) is called the determinant of L, denoted as d(L). The use
of the matrix Q, though very important when dealing with floating-point
errors in computations of the LLL algorithm [22, pp.11-12], can be waived
out in this case since the two cases of its applications described previously
can be relaxed with integer operations, i.e., the basis {bi} can be rounded
up so that it becomes integral.

As a starting point, notice that from any given basis {bi} of a lattice
(L, q), it is possible to construct an orthogonal basis {b∗i } by inductively
using the following Gram-Schmidt orthogonalization process:

Proposition 4.5.1. Let {bi} be a basis of a lattice L of rank n, define by
induction {b∗i } such that:

b∗i = bi −
i−1∑
j=1

μi,jb
∗
j (1 ≤ i ≤ n), where μi,j =

bi · b∗j
b∗j · b∗j

(1 ≤ j ≤ i ≤ n)

The set {b∗i } then forms an orthogonal basis of L. In addition, if d(L) is the
determinant of L, then d(L)2 =

∏
1≤i≤n ‖b∗i ‖2

Proof. The proof of orthogonality of {b∗i } can be done using mathematical
induction. The base case starts with i = 2 where b∗1 = b1, hence:

b∗2 · b∗1 =

(
b2 − b2 · b∗1

b∗1 · b∗1
b∗1

)
b∗1 = b2 · b∗1 −

b2 · b∗1
b∗1 · b∗1

b∗1 · b∗1 = 0

Similarly, assume that the set {b∗k} satisfies the proposition, the case k + 1
can be proceeded as follows:

b∗k+1 · b∗i =

(
bk+1 −

k∑
j=1

μk+1,jb
∗
j

)
b∗i = bk+1 · b∗i −

bk+1 · b∗i
b∗i · b∗i

b∗i · b∗i = 0

This completely proved the first part of the proposition. Also, since {b∗i } is
a basis of L, the matrix Q created from it satisfies d(L)2 = det(Q). Due to
the orthogonality of {b∗i }, only the diagonal of Q contains non-zero elements,
hence the second part of the proposition follows.

The idea of lattice reduction is to find a basis with vectors of shortest
magnitude, which also implies that they are nearly orthogonal. In LLL-
algorithm, a distinct criteria for bases being reduced, namely LLL-reduction,
is what follows.

80 Chapter 4. Extracting square roots in Z

Definition 4.5.3. Using the notations in Proposition 4.5.1, a basis {bi} is
called LLL-reduced if it satisfies that

|μi,j| ≤ 1

2
for 1 ≤ j < i ≤ n

|b∗i + μi,i−1b
∗
i−1|2 ≥

3

4
|b∗i−1|2 for 1 < i ≤ n

The latter condition can also be expressed as:

|b∗i |2 ≥
(

3

4
− μ2

i,i−1

)
|b∗i−1|2

Since {b∗i } was chosen inductively, the same type of algorithm can be
applied to find {bi} satisfying the above conditions. Indeed, assume that in
the case k = 2 (since it is meaningless with k = 1), the vectors b1, . . . , bk−1

are already reduced. The problem is now to reduce bk while still retaining the
previous vectors reduced. Starting with the first condition, i.e., |μk,j| ≤ 1/2
for j < k, one can assume that there exists l such that |μk,j| ≤ 1/2 for
l ≤ j ≤ k (the worst case would be l = k). Then, the basis must be modified
such that l can be decreased by 1, and iteratively until l = 0. Note that
according to the proof of Proposition 4.5.1 above, it is easy to check that if
l < j, then blb

∗
j = 0. Thus, if one chooses q = �μk,l� and replaces bk by

bk − qbl, it follows that μk,j remains unchanged for j > l since

μk,j =
bk · b∗j
b∗j · b∗j

− q
bl · b∗j
b∗j · b∗j

=
bk · b∗j
b∗j · b∗j

Meanwhile, it is also straightforward to verify that μl,l = 1 for every l by the
construction of {b∗l }:

b∗l · b∗l =

(
bl −

l−1∑
j=1

μl,jb
∗
j

)
b∗l = bl · b∗l

Thus, replacing bk by bk− qbl also implies μk,l to be replaced by μk,l− q and
hence it is less than 1/2 in absolute value by the selection of q. Therefore, l
can be decreased by 1 as μk,j ≤ 1/2 for l−1 < j < k. Repeating this process
until l = 0 will make sure that the case k satisfies the first condition.

Considering the second condition, namely Lovász condition, if |b∗i |2 <(
3/4− μ2

i,i−1

) |b∗i−1|2 then we can interchange bk and bk−1 and start working
with the first condition in the lower case k − 1. Initially speaking, this idea

Chapter 4. Extracting square roots in Z 81

seems to continue forever, but as a proof in [5, pp. 88-89], it indeed termi-
nates at a reasonable time.

Beside the main idea of the LLL algorithm, an improvement can be made
so that the computation is simpler. Note that in the two applications of LLL
reduction described in the previous section, the input bases can be rounded
up to integral coefficients. Thus, the LLL algorithm above can be modified
so that all computations will be done over Z instead of using floating-point
or rational arithmetic. The obstruction is that μi,j and |b∗i |2 can be rational,
and with the frequent use of GCD computations for rational arithmetic,
the algorithm will be slowed down. Alternatively, a method can be devised
that cares about these values only in abstract terms, that is, to indirectly
represent them. The following results enlighten this idea by introducing some
new notations, as illustrated in [5, pp. 92-94]:

Proposition 4.5.2. Let {bi} be an integral basis of a lattice L of rank n, and
hence the Gram matrix Q is also integral. For each i ≤ n forms a matrix M
of size i× i in which Mr,s = br · bs for 1 ≤ r, s ≤ i. Then di can be defined
such that

di = det(M) =
∏

1≤j≤i

|b∗j |2 (4.8)

Also, for all j < i it can be concluded that di−1|b∗i |2 ∈ Z, djμi,j ∈ Z, and for
j < m ≤ i,

dj

∑
1≤k≤j

μi,kμm,k|b∗k|2 ∈ Z

Proposition 4.5.3. With the notations used in Proposition 4.5.2, define
λi,j = djμi,j for j < i. Then λi,j ∈ Z and λi,i = di. In addition, for each pair
(i, j) with j ≤ i, u(i,j),k can be inductively defined with u(i,j),0 = bi · bj and
for 1 ≤ k < j,

u(i,j),k =
dku(i,j),k−1 − λi,kλj,k

dk−1

where u(i,j),k ∈ Z and u(i,j),j−1 = λi,j.

Thus, instead of recomputing μi,j as in the original algorithm using ratio-
nal arithmetic, one could alternatively represents them using pairs (dj, λi,j)
where λi,j can be computed by induction on u(i,j),k. In summary, the mod-
ification can be ordered, as given in pseudocode form in Algorithm 4.5.1.

82 Chapter 4. Extracting square roots in Z

Algorithm 4.5.1: IntegralLLLReduction

Input: An integral basis {bi} of L of rank n
Output: a H matrix contains coordinates of LLL-reduced basis
begin1

/* Initialize algorithm */

k ← 2 ; /* The case to work with */2

kmax ← 1 ; /* Indicate what vectors have been reduced */3

d0 ← 1 ; /* See (4.8) */4

d1 ← b1 · b1;5

H← In;6

while k ≤ n do7

if k > kmax then8

kmax ← k;9

for j ← 1to k do10

� Compute u(k,j),j−1 as in Proposition 4.5.3;11

if j < k then12

λk,j ← u(k,j),j−1;13

else14

dk ← u(k,j),j−1;15

endif16

endfor17

endif18

REDI(k, k − 1) ; /* If μk,k−1 > 1
2
, bk ← bk − qbk−1 */19

/* If |b∗k|2 <
(

3
4
− μ2

k,k−1

) |b∗k−1|2 */

if dkdk−2 < 3
4
d2

k−1 − λd
k,k−1 then20

SWAPI(k) ; /* Swap bk and bk−1 */21

k ← max(2, k − 1) ; /* Come back to case k − 1 */22

else23

for l = k − 2 to 1 do REDI(k, l);24

k ← k + 1;25

endif26

endw27

end28

Chapter 4. Extracting square roots in Z 83

Algorithm 4.5.2: Sub algorithm REDI

Input: k, l
Output: H, {λi,j}, {bi}, {di} modified, if any
Data: H, {λi,j}, {bi}, {di}
begin1

if |2λk,l| > dl then2

q ← 2λk,l + dl div 2dl; /* q =
⌊

λk,l

dl

⌉
= �μk,l� */3

Hk ← Hk − qHl ; /* Denote by Hi the column of H */4

bk ← bk − qbl;5

λk,l ← λk,l − qdl;6

for i ← 1 to l − 1 do λk,i ← λk,i − qλl,i;7

endif8

end9

Algorithm 4.5.3: Sub algorithm SWAPI

Input: k
Output: H, {λi,j}, {bi}, {di} modified, if any
Data: H, {λi,j}, {bi}, {di}
begin1

� Exchange Hk,Hk−1;2

� Exchange bk, bk−1;3

for j ← 1 to k − 2 do � Exchange λk,j, λk−1,j;4

λ ← λk,k−1;5

B ← (dk−2dk + λ2)/dk−1;6

for i ← k + 1 to kmax do7

t ← λi,k;8

λi,k ← (dkλi,k−1 − λt)/dk−1;9

λi,k−1 ← (Bt + λλi,k)/dk;10

endfor11

dk−1 ← B;12

end13

84 Chapter 4. Extracting square roots in Z

4.6 Finding square root of approximation α

Recall that in Algorithm 4.2.1, after the approximation process has been
done, a “small” algebraic integer α is returned which is also a perfect square
in Z[θ̂]. At this point, the remainder of this algorithm is to find the square
root of α, with an advantage that the coefficients of α as a polynomial in θ̂
are small integers, and thus finding its square root would not require much
amount of computation. The first problem is to construct α. However, due
to the size of the set U , it is not a good idea to compute α directly by
multiplying each element of U as it may come back to the original problem
with coefficient size. Fortunately, there exists an explicit algorithm that suits
the case whose principle relies on a popular observation, namely the Chinese
remainder theorem (CRT). The idea behind this algorithm can be pointed
out from the beginning of the theorem, as can be seen from the following
special case of the CRT:

Proposition 4.6.1. (Chinese remainder theorem) Let p1, . . . , pk be pairwise
coprime integers and x1, . . . , xk be arbitrary integers. Then there exists x ∈ Z
such that x ≡ xi (mod pi) for 1 ≤ i ≤ k. Moreover, x is unique modulo the
product of p1, . . . , pk.

Proof. Let P =
∏k

i=1 pi and Pi = P/pi. Since pi are pairwise coprime, then
for each i it is obvious that gcd(Pi, pi) = 1, and hence there exists an integer
ai such that aiPi ≡ 1 (mod pi). The solution can then be constructed as
follows:

x =

k∑
i=1

aiPixi (4.9)

To check back the conditions, note that Pi ≡ 0 (mod pj) for i �= j, thus the
result follows for 1 ≤ j ≤ k:

x =
k∑

i=1

aiPixi ≡ ajPjxj ≡ xj (mod pj)

On the other hand, assume x ≡ y (mod P) with x �= y, then for 1 ≤ i ≤ k
there exists mi ∈ Z+ such that x− y = mipi. Since pi are pairwise coprime,
then pj|mi for 1 ≤ j ≤ k and j �= i, and hence Pi|mi or P |x−y. This implies
either x = y or only one of them can be in [0, P − 1].

In this case pi can be freely selected to be prime integers to avoid com-
puting their greatest common divisors. Considering the leftover square, this
theorem also holds when it is applied to find the polynomial form of α in Z[θ̂]

Chapter 4. Extracting square roots in Z 85

from a large number of its factors. Additively, the set of primes pi should be
chosen so that for each pi the polynomial f(x) is irreducible over Z/piZ, and
thus these primes are called inert primes. This is to make sure that the op-
eration over each finite field is correct as was done over Z. Other than that,
in order to know how many inert primes that should be chosen to bound
the coefficients of α, a number of experiments should be done to find this
bound, which is normally represented in its logarithmic form. Based on the
above statements, Algorithm 4.6 gives a demonstration on how α should be
factored.

As can be seen from the pseudocode, this method has an advantage over
trivial multiplication that all computations are done over some finite field
Fp, and hence the coefficients of α are restricted to be small. In practice,
this improvement is so significant that even this method performs O(#IPB)
more polynomial multiplications than the trivial method, the time required
for it to finish is much more reasonable.

By applying the CRT, one could assume that α, the approximation of γ,
is obtained. The rest of the algorithm is now to find its square root before
multiplying it with a set of δsi

i aforementioned. Note that in most cases this
part can be skipped since α is already in Z due to the effectiveness of the
previous approximation step. Nevertheless, to make sure that the algorithm
works well in general, it is necessary to consider the case when α arrives as
a polynomial in θ of degree d ≥ 1. Since then, there exist various types of
methods that can be used to find

√
α, either by factoring its polynomial form,

or finding its square root in a finite field. In this context, an idea created
by M. Cipolla is used as it was successfully implemented in the GGNFS, a
reliable implementation of the GNFS algorithm. To understand this idea, it
is required that the following result be used, as its proof is given in [15, pp.
50-51,54]:

Proposition 4.6.2. Let K be a finite field of order q and L be its finite
extension of order qk. For each α ∈ L define k embeddings σi = αqi for
0 ≤ i ≤ k − 1, called the conjugates of α. Then the norm of α, defined as

N(α) =
k−1∏
i=0

σi(α)

is a mapping from L onto K.

According to this proposition, it is clear that N(α) = α
qk−1
q−1 ∈ Fq. For

our particular case, L is referred to as a quadratic extension of the finite

86 Chapter 4. Extracting square roots in Z

Algorithm 4.6.1: CRTAlgorithm

Input: A set V of (δi, si) and a set U of (ai − biθ, ei), MaxModulus
Output: α = (

∏#U
i=1(ai − biθ)

ei)
∏#V

i=1 δ−2si
i

begin1

IPB ← {} ; /* Initialize the set of inert primes */2

P ← 1 ; /* Initialize P in Proposition 4.6 */3

p← 2;4

while P < MaxModulus do5

while f(x) is not irreducible over Fp or p|disc(f) do6

p ← NextPrime(p) ; /* Find next prime > p */7

endw8

IPB ← IPB ∪ p;9

P ← pP ;10

endw11

/* Computing αp, the CRT residues of α */

foreach p ∈ IPB do12

foreach (ai − biθ, ei) ∈ U do13

αp ← αp(ai − biθ)
ei (mod (f(x), p));14

endfch15

foreach (δi, si) ∈ V do16

αp ← αpδ
−2si
i (mod (f(x), p));17

endfch18

endfch19

α ← 0;20

foreach p ∈ IPB do21

ap ←
(

P
p

)−1

(mod p);22

α ← α + ap
P
p
αp (mod P);23

endfch24

end25

Chapter 4. Extracting square roots in Z 87

field Fq with q is a prime integer p raised to the power of deg(f(x)), i.e.,
pn. Considering Cipolla’s algorithm as described in [3, pp. 157-159], it is
assumed that there exists an element x ∈ L such that N(x) = α. It is clear,
thought, that the polynomial form of α is in Fq, and hence such x is assured
to exist, since according to the above proposition the norm map is onto. In
addition, as the underlying field is quadratic, the norm of x can be simpli-
fied to N(x) = xq+1 = α, directly by the definition of this mapping. Thus,
the square root of α can be easily obtained with x(q+1)/2. This leads to the
complete algorithm of finding

√
α, as given in Algorithm 4.6.2.

Algorithm 4.6.2: CipollaSquareRoot

Input: α ∈ Fq

Output:
√

α
begin1

t ← Random() ∈ Fq;2

while t2 − 4α is a square do3

t ← Random() ∈ Fq;4

endw5

f(X)← X2 − tX + α;6

e ← q+1
2

;7

b(X) ← 1;8

s(X)← X;9

/* Use of successive squares method */

while e > 0 do10

if e (mod 2) = 1 then11

e ← e− 1;12

b(X)← Xb(X) (mod f(X));13

endif14

if e > 0 then15

e ← e
2
;16

s(X)← s(X)2;17

b(X)← s(X)b(X) (mod f(X));18

endif19

endw20 √
α ← b(X);21

end22

In terms of complexity, as the running time of Cipolla’s algorithm takes
O((log10q)

3), there is not much computing resource to be concerned in this

88 Chapter 4. Extracting square roots in Z

particular application. Also, this stage completely concludes the square root
algorithm, as well as hopefully terminates the whole GNFS algorithm, pro-
vided that the greatest common divisors found are not trivial. Otherwise,
either the algorithm should be restarted from the beginning, or it should find
another set U of smooth values which also forms the perfect squares in both
Z and Z[θ].

Remark. Note that in Line 21 it was not clear that b(X) is a square root
of α since it may contains variable X in its polynomial form. In order to
verify that this algorithm is valid, it can be assumed that b(X) = kX + m
for some k and m in Fq. Moreover, the quadratic extension L used in this
algorithm is Fq[X]/(X2 − tX + α), where t was chosen as in Line 3. From
this assumption, the following result confirms that b(X) is indeed in Fq:

Proposition 4.6.3. Let K be a finite field of odd order q, with α, t ∈ K such
that α is a square and t2 − 4α is not a square. Then the value of x(q+1)/2 in
the quadratic extension L = K[X]/(X2 − tX + α) is

√
a in K.

Proof. To equip the proof, recall firstly that if t2 − 4α is not a square, then
(t2 − 4α)(q−1)/2 = −1. Indeed, in the finite field K, there exists a primitive
element γ generating K and i ∈ Z such that γi = (t2 − 4α). Since there are
as many primitive elements as φ(q − 1), it can always be assumed that γ �=
t2− 4α. Assume on the contrary that (t2− 4α)(q−1)/2 = 1, then γi(q−1)/2 = 1,
and it turns out that i > 2 as i must be odd and i �= 1. This leads to the
fact that (q − 1)|i(q − 1)/2 since γq−1 = 1 following Lagrange’s theorem††,
and hence 2|i which causes a contradiction.
Let g(X) = X2 − tX + α, and express it in the form:

g(X) = X2 − 2
t

2
X +

(
t

2

)2

−
(

t

2

)2

+ α =

(
t

2
−X

)2

−
(

t

2

)2

+ α

Let X1 = t
2
− X, we can now observe the following manipulation where

(t2 − 4α)/4 = (t2 − 4α)(2−1)2 is also not a square since q is odd:

Xq
1 = X1(X

2
1)

q−1
2 = X1(X

2
1 − g(X))

q−1
2 = X1

((
t

2

)2

− α

) q−1
2

= −X1

††In Lagrange’s theorem, the order of every subgroup H of G always divides the order
of G, i.e., |G| = k|H | for some k ∈ Z+.

Chapter 4. Extracting square roots in Z 89

Then,

Xq =

(
t

2
−X1

)q

=

(
t

2

)q

−
(

q

1

)(
t

2

)q−1

X1 + · · ·+
(

q

1

)
t

2
Xq−1

1 + (−X1)
q

=
t

2
+ X1

Considering the image of X(q+1)/2 in L, i.e., b(X) it follows that:

k2X2 + 2kmX + m2 = (kX + m)2 = b(X)2 = Xq+1 =

(
t

2
+ X1

)(
t

2
−X1

)

=

(
t

2

)2

−X2
1 = α

Thus, the variable X on the left-hand size must be canceled, making k = 0,
and hence b(X) = m =

√
α.

Chapter 5

Completing the sieving part

So far the idea behind the GNFS has been revealed as it differs from the
Quadratic Sieve by the use of the ring Z[θ] for finding a perfect square in
the field of complex numbers C. Given a monic, irreducible polynomial f(x)
with integer coefficients and an integer m such that f(m) ≡ 0 (mod n), the
algorithm starts its sieving technique by finding enough pairs (a, b) so that
a + bm is smooth over a rational factor base F and a + bθ is smooth over
an algebraic factor base A. After the sieving step, the remaining tasks are
somewhat similar to that explained in the Quadratic Sieve algorithm with a
slight modification to further enhance the perfect square and finally to com-
pute the square roots.

Originally speaking, it has so far been assumed that everything necessary
to start an instance of the GNFS has been generated. In the actual imple-
mentation, these initial factors are unfortunately not trivial to be chosen.
Recall that in the case of the Quadratic Sieve, the polynomial f(x) = x2−n
is chosen regardless of the value of n. On the contrary, the GNFS provides a
flexibility to select a good polynomial that makes certain positive distinctions
to the other sieving techniques. Besides its obvious benefits, this advantage
raises a question on how to measure if a polynomial is good, and how to
choose a good one.

On the other hand, as long as a polynomial f(x) is chosen, it is also nec-
essary to form the factor bases as the second component of the sieving step.
However, it turns out that this is not as easy as in the Quadratic Sieve unless
one chooses to construct the factor bases using the brute force method. By
addressing these initial issues, this chapter is devoted to somehow overcome
the initial constraints before properly executing the algorithm. It starts by
mentioning some concepts used in assessing the quality of a polynomial used

91

92 Chapter 5. Completing the sieving part

in the GNFS, after which it describes an algorithm suggested by B. Mur-
phy in [20], with a significant improvement from T. Kleinjung in [12]. In
addition, at the end of this chapter, a different technique called lattice sieve
is introduced that serves for finding smooth values. In fact, this technique
excessively predominates the line sieving method described in §2.3.

5.1 Generalizations of polynomial selection

In the case of the GNFS, there are in fact two polynomials to be considered in
this selection process. Recall that in (2.2) the polynomial f(x) is used to form
the ring for smooth values (a+bθ), as well as the corresponding smooth values
a+bm ∈ Z. Also, in (4.2) b was replaced by −b in order to simplify the norm
function without affecting the result. In this manner, a− bm can be treated
in the same way as a−bθ if one thinks of the polynomial g(x) = x−m, and m
being a root θg of g(x), with a−bm ∈ Z[θg]. The fortunate fact is that g(x) is
linear, and that it has m ∈ Z as the only root, hence equalizing Z[θg] with Z.
Thus, the process of constructing squares in §2.1 can be generalized so that
there is no distinction between sieving in the algebraic and rational sides.
In fact, it can be assumed that the algorithm makes use of two polynomials
f1(x) and f2(x) having the same root m modulo n, while their complex roots
are θ1 and θ2, respectively. Accordingly, it is possible to define two separate
mappings φ1 : Z[θ1] → Z/nZ and φ2 : Z[θ2] → Z/nZ that map θ1 and θ2

to m. Suppose that a set U of pairs (a, b) is formed so that their products
form perfect squares in both rings, then these squares are indeed congruent
modulo n, since

γ2
1 = φ1

⎛
⎝ ∏

(a,b)∈U

(a− bθ1)

⎞
⎠ ≡ ∏

(a,b)∈U

(a− bm) (mod n)

γ2
2 = φ2

⎛
⎝ ∏

(a,b)∈U

(a− bθ2)

⎞
⎠ ≡ ∏

(a,b)∈U

(a− bm) (mod n)

In order to select the polynomial pair that satisfies the above conditions while
they are practically independent, the simplest way is to find f1(x) and f2(x)
associated with m such that f1(x) = n, whereas f2(m) = 0. A technique that
sufficiently addresses this idea is referred to as the base-m method. As its
name implies, given a common root m, the method determines the “digits”
of n as a number in base m. Assume that these “digits” starting from least

Chapter 5. Completing the sieving part 93

significant one are a0, a1, . . . , ad with |ai| < m, the polynomial f1(x) can be
constructed as follows:

f1(x) = adx
d + a1x

d−1 + · · ·+ a1x + a0

f2(x) can then be chosen to be x −m. As a result, it can be easily verified
that these two polynomials possess the same root m modulo n. In addition,
the value of m can be found in a relatively optimal way by the selection of
the degree d of f1(x). According to a conjectured complexity analysis given
in [14, pp. 76-84], the GNFS can be optimized so that its running time is at
most Ln[1

3
, (64/9)1/3 + o(1)], where

Ln[u, v] = ev(ln n)u(ln ln n)1−y

As a necessary condition to partially satisfy this optimization, the degree
d of f1(x) can be selectively computed from the following formula, with its
dependency on n:

d =
(
3

1
3 + o(1)

)(ln n

ln ln n

) 1
3

Since the value of d is located, it is then convenient to approximate a good
choice of m bounded by the d-th root of n, i.e., d

√
n. In addition, a sieve-

like process can be invoked to search for m close to this value so that the
coefficients of f1(x) are minimized to a certain extent. Nevertheless, this
method only focuses on finding valid pairs of f1(x) and f2(x), whereas the
technique described in the next section concentrates on a more efficient way
of weighting polynomials and selecting the best one among those candidates.

5.2 Defining polynomial yield

Generally speaking, the yield of a polynomial f(x) is simply the number of
smooth values obtained from the norm N(x − yθ) over a sieving region A∗.
According to this definition, a polynomial f1(x) is preferred over another
polynomial f2(x) if there exists a method to estimate that its yield is higher,
i.e., f1(x) possesses higher probability of having smooth values than f2(x)
over the same sieving region. Consequently, this value will mainly be used as
the mean for categorizing and selecting the “best” polynomial for the siev-
ing step. In addition, the selection process can be simplified by concerning
only skewed polynomials, i.e., polynomials whose coefficients are in ascend-
ing order. More precisely, let f(x) be a skewed polynomial of degree d, then

∗The range of a and b used for finding smooth values. For the line sieving technique
described in Chapter 2, A = [−A, A]× [1, B] ∩ Z2.

94 Chapter 5. Completing the sieving part

|ad| < |ad−1| < . . . < |a0| and the ratio ai/ai−1 should be approximately
constant for 1 ≤ i ≤ d.

In principle, there are two criteria that can be used to assess the yield,
namely size and root properties. Size properties refer to the average size
of N(a − bθ) over a given sieving region. Obviously, this feature directly
affects the yield of a polynomial. In other words, the smaller the size of
N(a− bθ), the higher the probability that it can be decomposed into primes
within the factor base. Therefore, the corresponding task is to choose f1(x)
and f2(x) so that N1(a, b)† = N(a − bθ1) and N2(a, b) = N(a − bθ2) are
optimized. Note that since f2(x) is linear, the value of N2(a, b) does not
vary remarkably among the selections of pairs (a, b) ∈ A, or by choices of
m ≈ d

√
n. This leaves f1(x) as the main concern in the selection process. In

particular, given a pair of polynomial found from the previous method, there
exist two simple ways of altering f1(x) and f2(x) whilst preserving its root
m modulo n, defined as follows:

1. Translation by t ∈ Z: Let g1(x) = f1(x− t) and g2(x) = f2(x− t) and
mt = m + t, then g1(mt) ≡ g2(mt) (mod n).

2. Rotation by P (x) with deg(P) < deg(f): Let fP (x) = f1(x)+P (x)(x−
m), then fP (m) ≡ f2(m) (mod n).

Also, with respect to the size properties of f1(x), the value of N1(a, b) is af-
fected by the shape of the region A used in the sieving step. In other words,
given a rectangle region A of size 2A×B, the average size of N1(a, b) depends
on the ratio between the length and height of A, namely the skewness s of
A given by s = A

B
. Note that the skewness s is distinct from the skewness

defined previously for a polynomial. However, as long as the algorithm at-
tempts to find a good polynomial, s can be thought of as a compensation for
balancing the skewness of f1(x).

In this manner, since the yield of f1(x) is not affected by the size of A,
it can be reduced to the simplest form when A =

√
s and B = 1/

√
s, and

hence a concrete measure of the size properties of f1(x) follows:∫
A

N2
1 (x, y)dxdy =

∫ 1√
s

0

∫ √
s

0

N2
1 (x, y)dxdy

From the other perspective, root properties of f1(x) is literally defined
as the distribution of roots of N1(x, y) modulo pk for some small primes

†Note that from now on this notation will be used to represent the norm, as it is shorter
than the conventional one.

Chapter 5. Completing the sieving part 95

p and k > 1. Unlike size properties, the importances of root properties
in polynomial selection is however unclear when it comes to estimating the
yield. Thus, in order to explain its contributions to this aspect, it is necessary
that a relating concept be mentioned, as shown below:

Definition 5.2.1. Let vp(v) be the p-adic valuation of a number v, then
contp(v) is defined to be the mean of vp(v) across some sample S, i.e.,

contp(v) ≈
∑

v∈S vp(v)

#S

Considering a random integer ir generated uniformly so that ir < r, then
it is obvious that the probability of ir dividing pk for some prime p and k > 1
is 1/pk, thus contp(ir) can be computed as:

contp(ir) =
1

p
+

1

p2
+

1

p3
+ · · · = 1

p− 1

On the other hand, let qp be the number of roots modulo p of N1(x, y), then
for a reason explained in [20, p. 46-47], it is easy to check that the expected
valuation of p in N1(x, y) is of the form

contp(N1) = qp
p

p2 − 1

In fact, given a small bound B, if N1(x, y) is treated as a random integer ir,
then the probability that N1(x, y) is smooth over some factor base A is the
same as that of γ, where

ln γ = ln ir −
∑
p≤B

contp(ir) ln p = ln ir −
∑
p≤B

ln p

p− 1

On the contrary, if the value of N1(x, y) behaves as it normally should, then
the likelihood that it is smooth over the same factor base can be computed
differently. In this case this value is equal to that of β given by

ln β = ln N1(x, y)−
∑
p≤B

contp(N1) ln p = ln N1(x, y)−
∑
p≤B

qp
p

p2 − 1
ln p

Let α(N1) = ln β − ln γ, then α can be thought of as a measurement on
how root properties of f1(x) would affect the chance that N1(x, y) is smooth.
In practice, if α appears to be much less than 0, then since ln β = ln γ + α,
N1(x, y) is analogously the same as a random integer of size β, where β = γeα.
In other words, N1(x, y) behaves as if it is a random integer of a smaller size

96 Chapter 5. Completing the sieving part

than it normally is. This confirms the impact of root properties on the yield
of f1(x). To sum up all the aforementioned observations, Algorithm 5.2.1
devises a reasonable process to find a list of good polynomials that possesses
both root and size properties.

5.3 Selecting the best polynomial

After the execution of Algorithm 5.2.1, it is very likely that a huge number of
so far “good” polynomials will be produced, all of which to a certain extent
would produce more smooth values than normal. The problem however, is
due to the fact that it is still impractical to make sample on their yields
as they may count to millions. Alternatively, if a less expensive method of
rating polynomials is available, then the best polynomials of similar yields
can be isolated, thereafter they may be sieved over some sample interval to
find the best one for the sieving step.

A simple idea suggested in [20, pp. 85-88] is to turn these polynomials
into polar coordinates. In particular, for each (x, y) there exists a pair (r, θ)
such that x = r cos θ and y = r sin θ. Note that in the case of skewed
polynomials sieving over a skewed region, it is necessary that s = x/y, and
thus it is better to use x =

√
sr cos θ and y = 1/

√
sr sin θ. Then due to the

nature of Ni(x, y), i.e., a homogeneous polynomial, it can be converted in to
a new coordinate as:

Ni(x, y) = rdNi

(√
s cos θ,

1√
s

sin θ

)
Note that for each fi(x) in the list above, since Ni(x, y) contain the common
factor rd, this factor cannot be used in the rating process and hence can be
assumed to be 1 without affecting the ranking algorithm. As a result, it is
sufficient to concentrate only on the value of Ni (s1cosθ, s2sinθ) for s1 =

√
s

and s2 = 1/
√

s. Moving a step further, for the sake of simplicity one could
define the following notation:

uNj
(θi) =

ln |Nj(s1 cos θi, s2 sin θi)|+ α(Nj)

ln BNj

where BNj
is a good bound for the factor base in accord with fj(x) and

Nj(x, y). Literally speaking, uNj
(θi) is simply the combination of root and

size properties with respect to a bound BNj
, sampling from pairs (x, y) of the

form (s1 cos θi, s2 sin θi). Furthermore, uNj
becomes effective in this ranking

process when it is pointed by the Dickman function [8], defined by

Chapter 5. Completing the sieving part 97

Algorithm 5.2.1: PolynomialSelection

Input: A number n, Fmax, limit J0, J1, list P of small primes
Output: A list of polynomials with f(m) ≡ 0 (mod n)
begin1

d←
(
3

1
3 + o(1)

)(
ln n

ln ln n

) 1
3 ;2

count ← 0 ; /* Number of polynomials found */3

while count < Fmax do4

ad−1 ←∞; ad−2 ←∞;5

while ad−1 and ad−2 are large do6

� Find ad dividing many small pk
i for primes pi ∈ P ;7

m ←
⌊(

n
ad

) 1
d

⌋
;

8

� Compute fm(x);9

endw10

xt ← x− t; mt ← m− t ; /* Translate fm(x) by t */11

f(x) ← fm(xt) + (c1x + c0)(x−mt) ; /* Rotate fm(xt) */12

� Find min P (t, c0, c1) ←
∫ 1√

s

0

∫ √s

0
N2

1 (x, y)dxdy;13

I(f, s) ← 1/2 lnP (t, c0, c1);14

if I(f, s) is small then /* With good root properties */15

for j1 ← −J1 to J1 do16

for j0 ← −J0 to J0 do17

fj0,j1(x) ← f(x) + (j1x− j0)(x−m);18

foreach p ∈ P do19

qp ← CountRoot(fj0,j1(x) ≡ 0 (mod p));20

if p|ad then qp ← qp + 1
p

+ 1
p2 + · · ·+ 1

pvp(ad)
‡;21

contp(Nj0,j1)← qp
p

p2−1
;22

endfch23

α(Nj0,j1) ←
∑

p∈P

(
1

p−1
− contp(Nj0,j1)

)
ln p;24

if I(f, s) + α(Nj0,j1) is small then25

� Output fj0,j1(x);26

count← count + 1;27

endif28

endfor29

endfor30

endif31

endw32

end33

98 Chapter 5. Completing the sieving part

Definition 5.3.1. Let Pj(n) denote the j-th largest factor of n, define by
ψ(r, B) the number of n ≤ r such that their largest factor, i.e., P1(n) is
bounded by B. Then for v ∈ R and v > 0 the Dickman function can be
defined as

ρ(v) = lim
r→∞

ψ(r, r1/v)

r
for v > 1

or 1 otherwise.

In other words, ρ(v) heuristically determines the probability that a uni-
formly random integer ir is B-smooth with v = ln r/ lnB. By applying the
Dickman function, ρ(uNj

(θi)) indicates the probability for ir to be B-smooth
where r ≈ uNj

(θi), which is exactly the yield of fj(x). To effectively compute
ρ(u), the following result gives a deeper analysis on the characteristics of the
Dickman function, according to a study by Norton given in [23]:

Proposition 5.3.1. Let ρ(u) be the Dickman function of u, then ρ(u) satis-
fies the following equations:

{
ρ(u) = 1 for 0 ≤ u ≤ 1
uρ′(u) + ρ(u− 1) = 0 for u > 1

(5.1)

This result shows that ρ(u) is a delay differential equation§ since the
derivate of ρ(u) depends on the value of ρ taken previously, i.e., at u − 1.
This observation implies that ρ(u) is piecewise analytic, that is, for each
k ∈ Z+ there exists an analytic function ρk(u) such that ρk(u) = ρ(u) for
k − 1 ≤ u ≤ k, and such functions can be dependently computed in the
following way [2, pp. 1706-1707]:

Proposition 5.3.2. Let k be a positive integer and 0 ≤ ξ ≤ 1. Define
ρk(k − ξ) such that

ρk(k − ξ) =

∞∑
i=0

ck,iξ
i

§A delay differential equation is a differential equation in which the derivate of the
unknown function depends on values of that function at both present and previous states,
that is, f ′(x) depends on f(x) and f(x− τ) for some τ > 0.

Chapter 5. Completing the sieving part 99

where ck,i are computed inductively as follows:

c1,0 = 1, c1,i = 0 for i ≥ 1 (5.2)

c2,0 = 1− ln 2, c2,i =
1

i2i
for i ≥ 1 (5.3)

ck,i =
i−1∑
j=0

ck−1,j

iki−j
for k > 2 and i > 0 (5.4)

ck,0 =
1

k − 1

∞∑
j=1

ck,j

j + 1
for k > 2 (5.5)

Then for each u and a positive integer l such that l − 1 ≤ u ≤ l, the
Dickman function ρ(u) agrees with ρl(u), i.e., assume that ξ = l − u, then

ρ(u) = ρ(l − ξ) = ρl(l − ξ) =
∞∑
i=0

ck,iξ
i (5.6)

Thus, the computation of ρ(u) becomes simple as it is possible to initia-
tively compute ck,i up to a certain precision K, then ρ(u) can be mapped
to a corresponding analytic function ρl in (5.6), provided that l ≤ K. More
precisely, Algorithm 5.3.1 gives formal steps that suffice this computation.

Furthermore, in order to scale this result over all possible pairs (x, y), it is
necessary to find the mean of ρ(uNj

(θi)) for θi ranging from 0 to π. This can
be approximately done by dividing [0, π] to as small as possible sub-interval,
e.g., k = 1000, as suggested in [20, p. 87]. Each sub-interval i can then
be represented by θi, the mean of θ within that sub-interval. Thus for each
polynomial f1(x) and the corresponding norm N1(x, y), its rating point can
be computed as

E(N1) =

k∑
i=1

ρ(uN1(θi))
‖

In the end, depending on the optimization of the algorithm, a few polyno-
mials f1(x) whose E(N1) are of highest value will be picked up for further
sampling before the best one is found. Since the number of these polynomials
is trivial, the final testing phase thus becomes practical. As a result, a simple
implementation of the overall idea can be found in Algorithm 5.3.2.

¶In order to compute (5.5) and (5.6), it is necessary to replace ∞ by some constant
whose value suffices for approximation purposes. As suggested in [2, pp. 1706-1707], 55 is
a good choice, and it is assigned to infinity.

‖Note that in [20, p. 87], this formula also considers the linear polynomial of the pair
(f1, f2), but since its value does not dominate the value of E(Nj,1, Nj,2), it can be omitted.

100 Chapter 5. Completing the sieving part

Algorithm 5.3.1: DickmanFunction

Input: a real number u > 0
Output: ρ(u)
begin1

K ← �u� ; /* Get the bound K of u */2

infinity ← 55¶;3

ξ ← K − u;4

c1,0 ← 1;5

for i ← 1 to infinity do c1,i ← 0;6

c2,0 ← 1− ln 2;7

for i ← 1 to infinity do c2,i ← 1
i2i ;8

for k ← 3to K do9

for i ← 1 to infinity do ck,i ←
∑i−1

j=0
ck−1,j

iki−j ;10

ck,0 ← 1
k−1

∑infinity
j=1

ck,j

j+1
;11

endfor12

ρ(u)←∑infinity
i=0 cK,iξ

i;13

end14

5.4 Improvement to polynomial selection

In 2005, T. Kleinjung suggested a better method for selecting the polynomial
pairs (f1(x), f2(x)) as a significant replacement to the beginning of Murphy’s
algorithm. In particular, the improvement was based on the observation that
the common root m of f1(x) and f2(x) modulo n need not be an integer.
The problem with a rational m is that the mappings φ1 and φ2 may produce
perfect squares not in Z and hence ruin the result. This is fortunately not
the case since there is always a way for canceling the denominators. In fact,
let f2(x) = px − m for gcd(p, m) = 1, it is clear that m1 = m

p
satisfies

f2(m1) ≡ 0 (mod n). The following result proves that f1(x) can also be
found having the same root modulo n:

Proposition 5.4.1. Let n, d ∈ Z+ and ad, p, m ∈ Z such that n ≡ adm
d (mod p)

and gcd(p, m) = 1. Let m̃ = d

√
n
ad

, then there exists a polynomial f1(x) =∑d
i=0 aix

i such that

• f1(
m
p
)pd = n

• |ad−1| < p + dad
m−m̃

p

• |ai| < p + m for 0 ≤ i ≤ d− 2

Chapter 5. Completing the sieving part 101

Algorithm 5.3.2: FindBestPolynomial

Input: List of polynomial P with their skewnesses and bounds, fmax

Output: List of polynomial T where #T = fmax

begin1

k ← 1000;2

foreach f1,j(x) ∈ P do3

N1,j(x, y)← ydf
(

x
y

)
;4

s1 ← √
sj;5

s2 ← 1/
√

sj ;6

uN1,j
(x) ← ln |N1,j(s1 cos x,s2 sin x)|+α(N1,j)

lnBN1,j
;

7

E(N1,j) ← 0;8

for i ← 1to k do9

θ ← π
k
i + π

2k
; /* Middle value of [π

k
i, π

k
(i + 1)] */10

E(N1,j)← E(N1,j) + ρ(uN1,j
(θ));11

endfor12

R[j] ← {E(N1,j), f1,j(x)};13

endfch14

Quicksort(R);15

� Return last fmax polynomials in R;16

end17

102 Chapter 5. Completing the sieving part

Proof. Let rd = n and inductively construct ri and ai for 0 ≤ i ≤ d − 1 as
follows:

ri =
ri+1 − ai+1m

i+1

p

ai =
⌊ ri

mi

⌋
+ σi

for 0 ≤ σi < p such that ri ≡ aim
i (mod p). Along the lines of [12, Lemma

2.1], it is clear that such construction satisfies the conditions listed above.

Note that since f1(
m
p
)pd ≡ 0 (mod n) and pd ≡ 0 (mod n), it is obvious

that m/p is a root of f1(x) modulo n. Also, by the original assumption, the
common root m1 is explicitly a rational, and hence if it is merely applied for
the GNFS, the final perfect squares may not be integers. In this case, instead
of using the pair (a, b) for which a−bm1 and a−bθ are smooth, the algorithm
can use (pa, pb) as a replacement whilst preserving the congruence of squares.
In fact, this makes no difference to the complexity of the algorithm since the
GNFS algorithm can be carried out with pairs (a, b) and multiplied with a
power of p after the square root algorithm.

On the other hand, from the second point of the above result it is easily to
see that Kleinjung’s idea has a significant impact on size properties of poly-
nomial yield. More precisely, this algorithm tends to find polynomial whose
three leading coefficients are small and bounded. In order to investigate this
advantage, it is first required that the following concept be introduced that
gives rise to the bounds of these coefficients:

Definition 5.4.1. Let f(x) =
∑d

i=0 aix
i, then for each skewness s for the

sieving region of f(x) define

sup(f, s) = max
i
|ais

i− d
2 |

Then the sup-norm of f(x) can be defined as

sup(f) = min
s>0

sup(f, s)

Given M < d+1
√

n as the bound of sup(f), then the upper bound of the

skewness s is
(

M
ad

)2/d

if one considers the formula of sup(f, s). In addition,

assume in the worst case that |a1| ≈ m̃, the optimal range of the skewness s
can be formulated as

smin =

(
M

m̃

) 2
2−d

≤ s ≤
(

M

ad

) 2
d

= smax (5.7)

Chapter 5. Completing the sieving part 103

This interval indicates the bounds for each of the coefficients of f(x), as given
below

ai,max =

{
Ms

d
2
−i

min for d
2
≤ i < d

Ms
d
2
−i

max for i < d
2

(5.8)

As an example, this value when applying to ad, ad−1 and ad−2 are respectively(
M2d−2

n

) 1
d−3

, M2

m̃
, and

(
M2d−6

m̃d−4

) 1
d−2

if one substitutes smin by its formula given

in (5.7).

With each selection of ad, it is now possible to seek for a value of ad−1 of
size max(p, ad). According to the second condition of Proposition 5.4.1, this
can only be the case if m differs from m̃ by at most a small scalar of p. To con-
tinue on this strategy, it can be assumed that p is a small integer decomposing
into some small primes pi such that pi ≡ 1 (mod d) and gcd(p, adn) = 1. It is
now a question to find solutions of the equation n ≡ adx

d (mod p), in which
case it can be verified that the number of such solutions is either 0 or dl.
Indeed, for each i within [1, l] there exist xi,1, . . . , xi,d ∈ Fp dividing p

pi
such

that these are d solutions of the equation n ≡ adx
d (mod pi). Following this

idea, each of the dl solutions of n ≡ adx
d (mod p) can then be represented

by a unique vector μ = (μ1, . . . , μl) with 1 ≤ μi ≤ d such that

xμ =
l∑

i=1

xi,μi

Given m0 > m̃ as the smallest integer dividing p, then for each xμ, mμ =
m0 + xμ is also a solution of n ≡ adx

d (mod p), whereas mμ is very close to
m̃. Thus, if m is computed using the above method, then the bound of ad−1

can be successfully minimized.

As the next step, while ad−2 can be computed as in Proposition 5.4.1,
there exists a less expensive method to test for ad−2 bounded by ad−2,max,
after which it can be found by the method in Proposition 5.4.1. This makes
sure that the resources are not wasted to compute ad−2 whose value does not
match the condition. In principle, the method bases on the following result:

Proposition 5.4.2. Denote by ai,μ the coefficient ai generated from the
choice of mμ, the sequence ei,j is defined such that

• e1,j ≡ ad−1,(j,1,...,1) (mod p) for j ≥ 1

• ei,1 = 0 for i > 1

104 Chapter 5. Completing the sieving part

• ei,j ≡ ad−1,(1,...,1,j,1,...,1) − ad−1,(1,...,1) (mod p) for i > 1 and j > 1

Also, let f0 =
n−admd

0

p2md−1
0

and for 1 ≤ i ≤ l, 1 ≤ j ≤ d define

fi,j = −addxi,j

p2
− ei,j

p

Then for each vector μ representing a solution of n ≡ adx
d (mod p),

ad−2,μ

m0
≈ f0 +

l∑
i=1

fi,μi

Thus, for each μ, one could test the size of ad−2,μ by computing f0 and
fi,j, after which

ad−2,μ

m0
can be compared to

ad−2,max

m0
to check whether this

coefficient should be selected as a good candidate. Likewise, the pseudocode
given in Algorithm 5.4.1 provides a summary of the explanations above, as
can be seen in [12, Algorithm 3.6].

5.5 Constructing the factor base

As mentioned in the beginning of this chapter, a trivial method for gathering
the first degree prime ideals serving as the algebraic factor base is simply to
search for each p the interval [1, p− 1] to find r satisfying f(r) ≡ 0 (mod p).
This method is sufficient if the bound for the factor base is small, e.g., few
thousands. Assume that one need to factor a large modulus n, and that the
bound is required to be 106, then this part of the GNFS may consume re-
markable efforts to be completed. Therefore, a better idea is to somehow find
the roots of f(x) in the corresponding finite field Fp in a more active manner.

In this context, since the polynomial f(x) ∈ Fp[x] has small coefficients,
it is convenient to factor it into distinct, monic, linear factors whose roots
can be easily retrieved. The problem now turns into finding an effective
algorithm for factoring f(x) over Fp. To facilitate this idea, there exists a
popular result that serves as a main principle throughout the algorithm, as
shown below:

Proposition 5.5.1. Let p ∈ Z+ be a prime and let Fp be the finite field of p
elements, then xp − x ∈ Fp[x] can be factored as

xp − x =

p∏
i=0

(x− i)

Chapter 5. Completing the sieving part 105

Algorithm 5.4.1: SelectSmallPolynomials

Input: A number n, degree d ≥ 4, bound M < d+1
√

n, l, pmax

Output: List of m for f(x) with small ad, ad−1, ad−2

begin1

P ← {} ; /* Set of primes pi used to form p */2

q ← 0;3

while q ≤ pmax do4

q ← NextPrime();5

if q ≡ 1 (mod d) then P ← P ∩ {q};6

endw7

for ad ← 1 to
(

M2d−2

n

) 1
d−3

do8

m̃ ← d

√
n
ad

;
9

ad−1,max ← M2

m̃
;10

ad−2,max ←
(

M2d−6

m̃d−4

) 1
d−2

;11

Q ← {};12

foreach q ∈ P do13

{rq,1, . . . , rq,d} ← Solve[n ≡ adx
d (mod q)];14

if rq,1 �= rq,2 then Q ← Q∩ {q};15

endfch16

foreach P ′ ⊂ Q| #P ′ = l, p =
∏

q∈P ′ q ≤ ad−1,max do17

for i ← 1 to #P ′ do18

q ← P ′[i];19

for j ← 1 to d do20

xi,j ← rq,j + q · Solve[rq,j + qx ≡ 0 (mod p
q
)];21

endfor22

endfor23

m0 ← m̃ + Solve[m̃ + x ≡ 0 (mod p)];24

foreach μ← (μ1, . . . , μl) | 1 ≤ μi ≤ d do25

� Compute {ad−1,μ} ; /* See Proposition 5.4.1 */26

endfch27

� Compute {ei,j} ; /* See Proposition 5.4.2 */28

f0 ← n−admd
0

p2md−1
0

;29

� Compute {fi,j} ; /* See Proposition 5.4.2 */30

foreach μ← (μ1, . . . , μl) | 1 ≤ μi ≤ d do31

if |ad−2,max

m0
| > |f0 +

∑l
i=1 fi,μl

| then32

� Select m = m0 +
∑l

i−1 xi,μi
;33

endif34

endfch35

endfch36

endfor37

end38

106 Chapter 5. Completing the sieving part

According to this result, if r ∈ Fp is a root of f(x), then x − r appears
in the factorization of both f(x) and xp − x over Fp. This means that the
greatest common divisor (GCD) g(x) of f(x) and xp− x over Fp contains all
monic, linear factors of f(x). If deg(g) ≤ 2, the process becomes trivial as
finding roots of quadratic and linear polynomials has been well studied. We
thus assume on the contrary that deg(g) > 2, and follows an idea that g(x)
can be further factored into smaller factors using the same strategy as was
done to isolate f(x).

Note that since g(x)|xp−x, it can be expressed in the form
∏k

i=0(x−xi),

and hence g(x − b) =
∏k

i=0(x − xi − b) =
∏k

i=0(x − ti) should also divide
xp − x. On the other hand, observe that

xp − x = x
(
xp−1 − 1

)
= x

((
x

p−1
2

)2

− 1

)
= x

(
x

p−1
2 − 1

)(
x

p−1
2 + 1

)
∗∗

Considering all the cases that can happen, then either g(x) divides one of the
above factors of xp− x, or its factors appears in at least two of them. In the
latter case, g(x) can be factored by finding the GCDs between g(x) and each
of these factors. Note that to check if gcd(x, g(x)) �= 1, it is trivial since it is
the case only if the free term of g(x) is 0. If this happens, then g(x) can be
divided by x and the Euclidean algorithm can be implemented to find GCD
between g(x) and either x

p−1
2 − 1 or x

p−1
2 + 1. In case the factors of g(x) are

trivial, i.e., 1 and g(x) itself, this process can be repeated with different values
of b, chosen uniformly random from 0 to p− 1. Furthermore, by recursively
executing this algorithm, all the linear factors of g(x) will be found, each
of which gives rise to a root of f(x) over Fp. To clearly demonstrate the
overall idea, Algorithm 5.5.1 explains the method from the programming
perspective, while the sub-algorithm Algorithm 5.5.2 technically describes
how the recursion should be done.

∗∗Note that since p is a prime and p− 1 is even, this is always the case.

Chapter 5. Completing the sieving part 107

Algorithm 5.5.1: FactorPolynomialInFiniteField

Input: A polynomial f(x), a prime p
Output: Set R contains linear factors of f(x) in Fp[x]
begin1

fp(x) ← f(x) (mod p);2

g(x)← gcd(f(x), xp − x) (mod p);3

R ← {} ; /* Set of factors of f(x) */4

FindFactors(g(x), R, p, 0);5

Return R;6

end7

Algorithm 5.5.2: FindFactors

Input: A polynomial g(x), a set R, a prime p, a number bp ∈ Fp

Output: a set R containing factors of g(x) in Fp[x]
begin1

if deg(g) = 0 then � Terminate algorithm;2

if deg(g) = 1 then3

R ← R ∩ {g(x + bp)};4

� Terminate algorithm;5

endif6

g1(x) ← 1;7

while deg(g1) = 1|| deg(g1) = deg(g) do8

b← Random(0, p− 1);9

g1(x) ← gcd(g(x− b), x
p−1
2 − 1);10

endw11

g2(x) ← g(x−b)
g1(x)

;12

R ← R ∩ FindFactors(g1(x), R, p, b + bp);13

R ← R ∩ FindFactors(g2(x), R, p, b + bp);14

Return R;15

end16

5.6 The lattice sieving technique

In §2.3 and §2.4 it has been shown that the line sieving technique can be
effectively used to find smooth values of the form (a, b) over a particular
sieving region. The problem with this method however, emerges with the
fact that the sieving part seems to dominate the total running time of the
GNFS, and that this technique is wasting most of its time computing pairs

108 Chapter 5. Completing the sieving part

(a, b) whose values are not smooth. Consequently, a suggestion in coping
with this performance issue is to find a way to isolate a wide range of these
bad pairs right from the beginning and sieve only those with high probabili-
ties of being smooth.

To further exploit this idea, the lattice sieve (LS) method was introduced
by J. Pollard that later supersedes the line sieving algorithm in finding many
smooth values in less amount of time. As an initialization, assume that the
two factor bases are of close bound B1, the LS defines a prime p in the fac-
tor base to be small if p < B0 for fixed B0 ranging from 0.1B1 to 0.5B1,
or medium otherwise. Then, the sieve is repeated for each medium prime q
(B0 < q ≤ B1) in the factor base. At each of these iterations, instead of siev-
ing for every pairs (a, b) appearing in the sieving region A as in line sieving,
the LS only considers those (a, b) whose norm can be sieved (divisible) by
q. Since there exist two types of norm, i.e., N1(a, b) and N2(a, b), the first
sieve considers the one with possibly smaller value. Since then, the rest of
the iteration is similar to that of the line sieving.

The first problem so far is how to represent the pairs (a, b) dividing q in a
efficient way so that further sieving by other primes should be convenient. As
suggested by Pollard, these pairs form a lattice L(q) within the (a, b) plane
of the sieving region. This means that a basis of at most 2 elements can be
found such that it generate every other pairs of the lattice. Assume without
loss of generality that this basis, preferably reduced, consists of two points
V1 = (a1, b1) and V2 = (a2, b2). As a result, if a point (a, b) ∈ A can be sieved
by q, there exists a pair (c, d) such that

(a, b) = cV1 + dV2 = (ca1 + da2, cb1 + db2) (5.9)

Note that since gcd(a, b) = 1, it is necessary that gcd(c, d) = 1 since gcd(c, d)
is divisible by gcd(a, b), emerged from (5.9). However, since (c, d) should be
used to represent (a, b), the inverse does not always hold. Indeed, it is pos-
sible that even if gcd(c, d) = 1, there still exists some number k such that
gcd(a, b) = k. In that case, if (a, b) is smooth, then so is (a/k, b/k), which
gives us the coprime pair (a1, b1). Thus, it is sufficient to consider only co-
prime pairs (c, d), and in the later stage the final results will be checked for
their validity.

At this point, the lattice L(q) can be represented by an array of the form
A[−C . . . C, 1 . . .D] whose elements point to the values in A dividing q. The
sieving process is then identical to that of the conventional line sieving to

Chapter 5. Completing the sieving part 109

find values that are smooth over two factor bases. More precisely, assume
that N2(a, b) was chosen for constructing the reduced basis, then the process
involves two steps, which can be done in arbitrary order:

• Sieve the values N2(a, b) corresponding to A[c, d] for primes p < q. In
this particular case, N2(a, b) is normally of the form ka− bm.

• Sieve the values N1(a, b) corresponding to A[c, d] for all other p in the
factor base.

From this moment toward, it is sufficient to use the line sieving method
described in §2.3 to execute the above two steps. That being said, assume
that the array A needs to be sieved for a prime p in the former step, then a
shortest vector (c, d) in L(q) must be found such that

cN2(a1, b1) + dN2(a2, b2) ≡ 0 (mod p) (5.10)

Then, by shifting the values of c and d iteratively by p, the corresponding
elements in the array A will be sieved, and the iterations terminates when
c > C and d > D. In special case, i.e., N2(a1, b1) ≡ 0 (mod p) (resp.
N2(a2, b2) ≡ 0 (mod p)), then for each choice of d (resp. c) the whole d-th
column (resp. c-th row) will be sieved. To express this sieving method in a
more formal view, Algorithm 5.6.1 addresses the simplest form of the lattice,
with many of its aspects are available for improvements and optimizations
when coming into practice.

Remark. To get the reduced basis of any two independent vector V1 and V2,
an LLL reduction technique described in §4.5 can be employed to give the
precise solution. On the other hand, since the dimension is 2, there exists
a less expensive method to achieve an acceptable result for this task. This
method resembles the Euclidean algorithm for finding the greatest common
divisor. In practice, this iterative technique compares |V1| and |V2| at each
iteration and reduces the length of the greater one. Assume that |V1| < |V2|
at one step, then a new V2 can be achieved from:

V2 = V2 − V2 · V1

V1 · V1

V1

Finally, the loop terminates once V1 · V2 ≈ 0, i.e., the vectors are relatively
orthogonal.

Considering the improvement in the complexity of the lattice sieve, note
that since for each medium prime p, the sieve only considers those pairs (a, b)

110 Chapter 5. Completing the sieving part

Algorithm 5.6.1: LatticeSieve

Input: f1(x), f2(x), the bounds B0 and B1, a skewness s, sieving
bound M , factor bases F1 and F2

Output: List of smooth values S
begin1

S ← {};2

foreach (q, r)|(q, r) ∈ F2, q > B0 do3

V1 ← (q, 0
√

s); V2 ← (r, 1 1√
s
) ; /* Get skewed basis */4

ReduceBasis(V1, V2) ; /* Assume that |V1| < |V2| */5

C ← M+a2

a1
;6

D ← |V1|
|V2|C;7

� Initialize array A to contain 1;8

q1 ← B1; q2 ← q;9

for i ← 1 to 2 do10

foreach (p, r)|(p, r) ∈ Fi, p1 < qi do11

� Find smallest (c, d):12

cNi(a1, b1) + dNi(a2, b2) ≡ 0 (mod p);
while c < C do13

if Ni(a2, b2) ≡ 0 (mod p) then14

for d0 ← 1 to D do A[c, d0]← A[c, d0]p;15

else16

d0 ← d;17

while d0 < D do18

A[c, d0]← A[c, d0]p;19

d0 ← d0 + p;20

endw21

endif22

c ← c + p;23

endw24

endfch25

endfor26

for c← −C to C do27

for d← 1 to D do28

a ← ca1 + ca2; b← cb1 + cb2 ; /* Reconstruct (a, b) */29

if A[c, d] = N1(a, b)N2(a, b) then S ← S ∩ {a, b};30

endfor31

endfor32

endfch33

end34

Chapter 5. Completing the sieving part 111

whose norms dividing p, the complexity is reduced to 1
p

for B0 < p ≤ B1,
and hence the total reduction will be the factor

W =
∑

B0<q≤B1

1

q
≈

log
(

B1

B0

)
log(B1)

Chapter 6

The GRID environment

As mentioned earlier, the GNFS algorithm was designed in a way that its
implementation supports parallel computing, at least to a certain extent. In-
deed, this parallel scheme can be applied during executing each step of this
algorithm. Considering the polynomial selection phase, a wide range of com-
puters can be assigned with different intervals of ad as inputs for Algorithm
5.4.1 to produce distinct polynomials, after which a central server will be re-
sponsible for selecting the best candidate for the sieving step. Then, due to
the design of the sieving techniques, the sieving region can be divided for dis-
tribution over the GRID network in the case of line sieving, or that the set of
medium primes q can be splitted if one uses the lattice sieve as an alternative.

Moving toward the next phase, again each iteration of the Block Lanc-
zos’s method can be equally distributed, and results from these parallel com-
putations are then collected and assembled to form the input for the next
iteration. Even though there exist data dependencies among these steps,
it is practically possible to use distributed computing, especially when the
matrix size extends to millions of columns and rows. Finally, when several
dependencies have been found, each of them can be used independently by
the square root algorithm to check whether the corresponding roots yield
non-trivial factors of n, hence making this ending process also distributable.

Installed at Rovaniemi University of Applied Sciences (RAMK) in 2005,
the GRID network has been utilized in many kinds of research projects.
Due to the need of computing resources by the GNFS, this chapter aims at
describing a simple and standardized GRID model, namely Condor which
is sufficient for experimenting this algorithm. In addition, this chapter also
contributes a new extension in system design to further enhance Condor in
managing and utilizing its features for the special case at RAMK. Otherwise,

113

114 Chapter 6. The GRID environment

it can also be regarded as a document supporting further developments and
redesigning, should the initial architecture be examined.

6.1 An overview of Condor’s operation

In the distributed computing community, Condor plays a vital role as a de
facto model for parallel computing. Being developed at Wisconsin university,
Condor acts as a resource manager for a computer system and appropriately
schedules jobs execution using the computing power under its management.
In the simplest form, a typical Condor’s system is made up of three com-
ponents: the job submitter, the Condor manager, and the Condor pool con-
taining a number frequently idle computers called Condor workers, as can
be seen in Figure 6.1. [31, pp. 1-4]

Figure 6.1: A sample of Condor network operation

In Condor’s terms, a job is referred to as a need of executing a program for
certain results. In this aspect, a proper job consists of an executing program,
its input and an instruction on how it should be run. Considering the life
cycle of a job within a Condor environment, the following steps show the

Chapter 6. The GRID environment 115

process from when the job is to be created until results are delivered back to
the job submitter [31, pp. 27-30]:

1. The user creates the desired executing program(s) and input files. At
the same time, the user should also create an instruction file which
indicates how the program should be run, on what type of resources
(platform, memory, etc.) should it be executed. From this point, this
instruction file is referred to as the submit file.

2. As the user submits the submit file using a job submitter on his/her own
premise, the job information will be advertised to the Condor manager
for resource matching.

3. After the arrival of the job, a so-called ClassAd mechanism running
within the Condor manager will be responsible for finding available
resources in the Condor pool that match the job requirements. If no
resource is found, the job is added to a queue, serving in FIFO manner.
[25]

4. In case an available resource is found satisfying the job’s conditions,
the Condor manager informs the submitter on the location (e.g. IP
address) of the resource, after which the submitter sends all the job
files needed by the computation to the resource computer(s).

5. By receiving the job files from the submitter, the resource starts ex-
ecuting the job files. After the execution has finished, all results are
directed back to the submitter, ending the life cycle of the job.

Beside the core functionality, Condor also provides a comfortable moni-
toring tools for users and system administrators to manage jobs and resources
status. Indeed, in order to trace the process of the submitted jobs, the com-
mand condor q can be issued directly in the submitter batch console to show
job relevant information such as job ID, status, running time, memory oc-
cupation, etc. On the other hand, the Condor manager’s administrator can
monitor the Condor pool by issuing the condor status command that shows
a real time report on the status of each computer participating in the pool.
Also, with the availability of other job and resource management commands,
Condor achieves a number of remarkable advantages, as shown below:

• Scalability: since Condor uses as simple client-server structure, man-
agement of large Condor pools can be done with inexpensive computing
resources. Moreover, as machines in the Condor environment operate
independently of each others, a Condor pool can be expanded by simply

116 Chapter 6. The GRID environment

installing Condor instances on new machines and connecting them to
the network. After that, these new resources can be effectively managed
and utilized by Condor managers in the same way as for the existing
ones.

• Reliability: the most important consideration in scientific computing
is the ability to provide error-free computations. Condor supports this
feature by having the Condor manager to check if jobs have been in-
correctly executed due to system corruptions. In such cases, depending
on the initial configuration, it either restarts jobs on other resources or
notifies the submitters about the situation, thus preventing any further
mistakes and wastes of computing power.

• Manageability: since Condor operates with highest privileges in every
participating machine, it provides a great ability to control and monitor
all the parameters of each resource as well as jobs executing on it. In
addition, it becomes evident when Condor is scheduled to run a large
program dividing into millions of jobs. While keeping user’s efforts
away from management issues, Condor automatically distributes these
jobs for parallel computing continuously on all available resources, and
returns results as they are correctly computed. In addition, it becomes
evident when Condor is scheduled to run a large program dividing into
millions of jobs. While keeping user’s efforts away from management
issues, Condor automatically distributes these jobs for parallel comput-
ing continuously on all available resources, and returns results as they
are correctly computed.

• Saving computing power: it is very likely nowadays that most computer
systems are not dedicated for distributed computing, such as university
and company networks. The fact is that computing power in such
systems is being wasted from time to time as computers are mostly in
idle state, and even when they are active, many activities do not take
full advantages of their capabilities. As a solution, Condor was also
designed for utilizing unused resources for parallel computations, while
securing acceptable resources for local system operation and other user
activities.

Due to the above observations, the computer system at RAMK is seen
to be suitable for deploying Condor as a mean of combining educational
activities and a powerful distributed computing environment. Indeed, as
the following sections show, an extension to this system is made to further
facilitate the nature of research at RAMK, not only for experimenting the
GNFS, but also for other scientific activities.

Chapter 6. The GRID environment 117

6.2 A projects scheduling mechanism

As explained in the previous section, the Condor software offers a powerful
method for dealing with management issues of distributed computing over
a large computer system. In particular, it defines the concept of job as the
unit of computation in the GRID environment. The problem with this defi-
nition however, arises when it comes to distinguishing among jobs belonging
to different computations, that is, when several programs exist, each of which
consists of many jobs to be executed. In such cases, if all the jobs are sub-
mitted at the same time, most of them shall not be executed in near future
due to the limitation of available resources. As a result, these jobs during
their idle state would consume a huge amount of monitoring resource from
the Condor manager.

To address this issue, we introduce a concept of project that groups jobs
of the same computing purpose into a single instance. In other words, assume
that a computation is divided into many jobs for distributed computing, then
these jobs must be assigned to a single project as they are parts of the same
computation. Moreover, instead of submitting these jobs all at once, the
project only sends to Condor certain number of jobs for every pre-configured
period, and terminates after all of its jobs have been correctly executed.
Similar to that of a job, the following steps show how a project behaves
during its life cycle:

1. The user creates the executing program and a number of jobs, each of
which contains several files necessary as input for the executions. All of
these files are then submitted using a method specified by the software
extension to a project managing server, namely the project controller.

2. The project controller creates a project for these files along with a
dedicated working directory and declares this project active by giving
it a child process.

3. For every given period, e.g., 30 seconds, the project contacts the Condor
manager to check how many machines are available in the Condor pool
that match the job conditions specified by the user.

4. If n such resources exist, the project creates valid submit file for n
pending jobs and submits them to the Condor manager. Since then,
with regards to the Condor environment, the project controller plays a
role of an automatic job submitter.

118 Chapter 6. The GRID environment

5. Submitted jobs are handled within Condor environment and returned
as soon as they have been correctly executed. Meanwhile, the project
checks for the validity of these results, and in case they are corrupted,
the corresponding jobs are reset for new execution. Otherwise, as long
as there exist incomplete jobs, the process returns to Step 3.

6. When all the results have been successfully received, the project for-
mats them into an accessible form and sends the final outcome back
to the user. After this task, the project ends its life cycle and hence is
terminated.

In addition to the above concept, a network extension is also deployed
that serves for the purposes of managing many different projects and simpli-
fying the user interface. This extension behaves as an intermediate system
connecting and administering communications from both users and the Con-
dor environment. As Figure 6.2 shows, a Web environment suffices these
conditions as it supports simple and reliable communications with users over
the Internet, and at the same time with the Condor environment using a
project database.

According this figure, the overall operation with respect to a project life
cycle can be literally explained as follows:

1. The project is firstly created within user’s premise, after that it will
be advertised to the Web server located remotely over the Internet.
At the same time, depending on the instruction from this Web server,
project files are uploaded to a project storage.

2. Upon receipt of the submitting project, the Web server adds it to the
project database, along with a location pointing to where its files are
stored.

3. The Condor environment, or more precisely the project controller, fre-
quently checks the project database for new projects. If an entry is
found, the controller gets the corresponding project and its files speci-
fied in the database for execution.

4. The Condor environment starts executing the project until all of its
jobs are correctly computed. Note that in this case several projects
may be executed at a time.

5. Once the project is correctly executed, its complete status is returned
to the database, along with the result sending back to a specific location
in the project storage.

Chapter 6. The GRID environment 119

Figure 6.2: A network diagram for the Web environment

120 Chapter 6. The GRID environment

6. As the Web server notifies the user on the completion of the project, the
user may download the result from a storage specified by information
from the Web server.

In overall, apart from the benefit of saving computing resource for the
Condor manager, the above design also provides a flexibility for making a
friendly user interface to replace the direct use of batch system provided by
Condor. Indeed, Web technologies can now be used to support users with
simpler tools for submitting and managing their own projects. This method
is also useful if one considers it as a popular and reliable communication
medium over the Internet.

6.3 Optimizing data transmission

In practice, one of the most important considerations with distributed com-
puting is the availability of network infrastructure for sending and receiving
job data as well as other administrative information. As for the case of Con-
dor, it performs network operations using a special communication protocol
to connect different components together. In executing each job, after an
available Condor worker has been found, all the job files will be sent from
the submitter to this worker. The worker then executes the appropriate file
and returns the result once the execution finishes.

To explain the importance of this aspect, it is necessary to consider the
scenario in which the above execution causes significant waste of network
bandwidth. Indeed, we begin this example by introducing the following con-
cepts:

• Common job files: within a project, a job file is regarded as common
if it appears as an input for every job. Examples of such files include
execution files, common configuration files, or common input file whose
existences are normally crucial for error-free execution of each job.

• Individual job files: within a project, a job file is regarded as individual
if it appears as an input for only one job. These files play a key role
in the mean of distributed computing as they are normally divided out
from a large input file to serve the parallel process. Thus, if two jobs
possess different individual job files, it is normally true that the results
produced by them are also different, and vice versa.

Concerning the example of a project given in Figure 6.3, it is easy to see
that there exist 3 different common files and 4 individual files unique for each

Chapter 6. The GRID environment 121

-rwxr-xr-x 1 x x 215096 2007-09-20 19:34 CommonFile1

-rwxrwxr-x 1 x x 21096 2007-09-22 18:53 CommonFile2

-rwxrwxr-x 1 x x 34096 2008-02-07 17:35 CommonFile3

-rwxr-xr-x 1 x x 2288 2006-02-11 02:07 IndividualFile1

-rwxrwxr-x 1 x x 2646 2007-11-20 17:05 IndividualFile2

-rwxrwxr-x 1 x x 7656 2008-02-06 23:47 IndividualFile3

-rwxrwxr-x 1 x x 3456 2007-11-26 20:43 IndividualFile4

Figure 6.3: A sample set of job files

job of the project. Assume that one million such jobs exist for this project,
and that the individual files are equally splitted out of 4 large input files,
then the total amount of data transmission across the network would be:

S0 = 1000000(215096 + 21096 + 34096 + 2288 + 2646 + 7656 + 3456)

= 286334000000 (byte) ≈ 273069 (MB)

On the other hand, if the large input files are not splitted and hence only
one job is to be computed, the bandwidth consumed by this project is now
significantly reduced, as given by:

S1 = 215096 + 21096 + 34096 + 1000000(2288 + 2646 + 7656 + 3456)

= 16046270288 (byte) ≈ 15300 (MB)

The ratio S0/S1 ≈ 17.8 shows that if one merely submits all the jobs of the
above project, even a fast network infrastructure may not be sufficient to
support the transmission, and that bandwidth is being wasted for unreason-
able factors. Referring to the example, such difference is caused by the fact
that common files are being sent multiple times along with the jobs, whereas
this should not be the case since each Condor worker has already received a
copy of these files after its first contribution to this project. Following this
idea, suppose that there are 1000 workers in the Condor pool, and that each
of them receives exactly one copy of common files during the execution of
the project, then the total bandwidth consumed would be:

S2 = 1000(215096 + 21096 + 34096) + 1000000(2288 + 2646 + 7656 + 3456)

= 16316288000 (byte) ≈ 15560 (MB)

As the difference between S1 and S2 is subtle, this strategy clearly produces
a remarkable improvement compared to the trivial submission method men-
tioned above. The remaining task is to technically deploy it while maintain-
ing the functionality of the Condor environment. Thus, instead of using the

122 Chapter 6. The GRID environment

-rwxr-xr-x 1 x x 215096 2007-09-20 19:34 CommonFile1

-rwxrwxr-x 1 x x 21096 2008-02-07 17:35 CommonFile2

-rwxrwxr-x 1 x x 34096 2008-02-07 17:35 CommonFile3

drwxr-xr-x 2 x x 4096 2006-02-11 02:07 IndividualDir1

drwxr-xr-x 2 x x 4096 2006-02-11 02:07 IndividualDir2

drwxrwxr-x 2 x x 4096 2007-11-26 20:43 IndividualDir3

drwxr-xr-x 2 x x 4096 2006-02-11 02:07 IndividualDir4

Figure 6.4: A sample set of project files

conventional file transfer mechanism provided by Condor, we attempt to use
a normal file sharing system such as NFS or Samba for on-demand transmis-
sion of job files. In addition, since the two file types need to be distinguished
from the beginning of the project execution, the project files must follows a
standard directory structure, of which an example of the above project can
be seen in Figure 6.4. A proper explanation for this model is then followed:

• The common files are located directly in the project root directory. In
fact, any file appears in this location will be categorized as common
job files.

• Assume that there are n jobs for a project, then each directory appears
in the project root directory is called an individual directory, and it
must contain exactly n files. Within each individual directory, each file
is assigned as an individual file for a job.

• If there exist more than one individual directory, e.g., Figure 6.4, then
when a job is being structured, the project will pick up from each
individual directory an individual job file with directory index corre-
sponding to that of the job. As an example, each individual file in
Figure 6.3 is taken from each individual directory presented in Figure
6.4.

On the other hand, note that since Condor was not designed to sup-
port this feature, each component of the Condor environment must also be
equipped with a special program in order to perform this task. In particu-
lar, while the project controller is scheduled to periodically submit as many
jobs as possible, each Condor worker also needs to check whether it should
download the common files before executing any job. In fact, within each
worker, a separate hard disk space is used to temporarily store common files
of those projects to which the worker has contributed. In addition, from

Chapter 6. The GRID environment 123

Figure 6.5: Modified project life cycle

the very beginning of each project submission, project files should arrive the
project storage under a compressed form, and hence there must also exists a
service running on this storage server to validate the structure of these files
before the project can be activated for computation in the Condor environ-
ment. Assume that a project has already been added to the database and the
project storage, the above observations lead to a network design illustrated
by Figure 6.5, in which the communication among different machines can be
literally described as follows:

1. The special service on the project storage queries the database for in-
formation regarding new projects. Based on the responses, it then
validates the structure of the project files. If the structure matches
the standard specified by Figure 6.4, the project is activated in the
database so that it is available for computation.

2. The project controller gets the project from the database and prepares
for its job submission routine.

3. Within the project execution process, each job is submitted to the

124 Chapter 6. The GRID environment

Condor manager, after which it is distributed to an appropriate Condor
worker for remote computation.

4. Upon receipt of the job information, the Condor worker downloads
the corresponding individual files from a location specified by the job
information. In addition, if the common files of the project do not
appear in the local storage, the worker downloads the common files
from the storage.

5. Once all the necessary files are presented, the job is executed, after
which its result is sent back to the project controller.

6. After the project has been fully computed with all of its jobs executed,
the project result is returned to the project storage and its completed
status is returned to the project database, ending the active period of
the project.

Compared to the model presented by Figure 6.1, it is clear that this final
design opts a more complicated structure when it comes to an implemen-
tation. However, for the reason described above, this complexity greatly
reduces the minimum requirement concerning the capacity of the network
infrastructure. Consequently, it allows the computer system at RAMK to be
used as a distributed computing environment. As an example, [11, pp. 12-15,
25] presents a breakthrough result containing 200 new abelian square-free en-
domorphisms (resulting to a powerful substitution over four letters) produced
by this system during computations for combinatorics on words research. In
fact, it has opened new opportunities for a number of research at RAMK to
continue their developments with the support of massive computing power.

Chapter 7

An empirical conclusion

As described in chapters 2 to 5, the GNFS algorithm involves several steps
toward the factorization of any composite integer of general form in Z. In
particular, it begins by selecting a good polynomial f1(x) that forms the field
of fraction Q[x]/(T (x)) for some monic version T (x) of f1(x), i.e., T (x) =
ad−1

d f1(x/ad), as can be seen in Proposition 4.1.1. Moreover, the polynomial
selection process should also make sure that f1(m) ≡ f2(m) ≡ 0(mod n)
where f2(x) = px−m, of which an explanation is located in §5.4.

After the best polynomial has been selected with both good root and size
properties, the algorithm turns into finding a number of pairs (a, b) ∈ Z2 such
that the factors of N1(a, b) = bdf1(a/b) and N2(a, b) = bdf2(a/b) are bounded
to some pre-defined algebraic and rational factor bases, respectively. For this
purpose, §2.3 and §2.4 present a line sieving method for collecting such pairs,
whereas §5.6 gives a more effective and faster technique, known as the lattice
sieve as it makes use of lattice bases in searching the pairs. As soon as a set
of pairs is found whose cardinality is greater than that of the factor bases
together with an additional quadratic character base (QCB), the description
in §3.3 helps to form a matrix equation that can be solved using the Gaus-
sian elimination method, or preferably the Block Lanczos’s algorithm if the
matrix is of large size.

Once a non-trivial solution (dependency) of this equation is computed
which indicates which pairs are to be picked up, Montgomery’s square root
algorithm can be invoked to multiply these pairs together and produce an al-
gebraic square root β of the equation (2.2). Finally, by mapping β to x ∈ Z,
(2.3) shows that a congruence of square is found such that the factors of n
can hopefully be computed from gcd(n, x− y) and gcd(n, x+ y). If the value
given is trivial, either a different dependency from the matrix equation is

125

126 Chapter 7. An empirical conclusion

Table 7.1: Polynomials resulted from base-m method

f1(x) f2(x)
25 + 7x + 2x2 + 12x3 −38 + x
9 + 11x + 2x2 + 13x3 −37 + x
35 + 18x + 6x2 + 14x3 −36 + x
3 + 4x + 15x2 + 15x3 −35 + x

26 + 18x + 13x2 + 18x3 −33 + x
11 + 4x + 6x2 + 20x3 −32 + x

used, or the algorithm is restarted with a new instance of f(x).

To ensure clear explanation of the whole process, this concluding chap-
ter dedicates in giving an extended snapshot with simple input to illustrate
the computations throughout the GNFS algorithm that factors the number
661643. In addition, the conclusion provides brief description on the devel-
opment of integer factorization and possible trends for the GNFS.

7.1 Initialization of the algorithm

As the beginning of the algorithm, the polynomial selection phase is divided
into three distinct steps, implemented using Mathematica, a well known com-
puter algebra system. The first step involves a primitive search of polynomials
f(x) using either the base-m method or Kleinjung’s trick in Algorithm 5.4.1.
Since n = 661643 is small, the chosen degree for the polynomial is d = 3,
and thus the Kleinjung’s method is skipped out as it is more suitable for
d ≥ 4. In addition, while the interval for ad is [12, 20], the base−m method
produces several polynomials, as shown in Table 7.1.

Moving a step further, Algorithm 5.2.1 is implemented that optimizes the
size properties of each polynomial in Table 7.1, after which it sieves through
the variations of each such polynomial with sieving region [J0×J1] = [10×10]
and a sample of the first 150 primes to find those with α < −1. After
100 polynomials have been found, the final step computes the rating for
each polynomial, sorts the list in descending order, and choose the first
one. As illustrated in Table 7.2, an excerpt of the finding indicates that
f1(x) = 25 + 7x + 2x2 + 12x3 is chosen as one of its variation arrives at the
rating of 986. With the optimized selection of (c0, c1, t) = (0, 1, 1) and the
pair (j0, j1) = (1,−3), the optimized version of this polynomial then follows

Chapter 7. An empirical conclusion 127

Table 7.2: Final list of optimized polynomials

f1(x) s c0 c1 t (j0, j1) α Rating
−70 + 119x− 36x2 + 12x3 0.839476 0 1 1 (-2,-3) -1.92051 902
47 + 116x− 36x2 + 12x3 0.839476 0 1 1 (1,-3) -1.1785 986

9 + 48x + x2 + 13x3 0.778176 0 1 0 (0,-2) -1.34214 955
120 + 45x + x2 + 13x3 0.778176 0 1 0 (3,-2) -2.81245 706
−28 + 12x + 2x2 + 13x3 0.778176 0 1 0 (-1,-1) -1.82316 890
−65− 24x− 34x2 + 14x3 1.07131 0 1 1 (-2,1) -1.11697 970
−28− 99x− 32x2 + 14x3 1.07131 0 1 1 (-1,3) -1.39869 881

Table 7.3: Algebraic factor base A

(r, p) (r, p) (r, p) (r, p) (r, p) (r, p) (r, p)
(2, 2) (7, 13) (11, 19) (21, 43) (62, 83) (18, 107) (1, 139)
(2, 3) (10, 13) (9, 23) (0, 47) (76, 89) (84, 107) (16, 139)
(3, 3) (12, 13) (4, 37) (36, 53) (37, 97) (42, 109) (125, 139)
(3, 5) (15, 17) (29, 41) (34, 71) (57, 101) (18, 113)
(2, 7) (4, 19) (9, 43) (70, 73) (61, 103) (114, 127)
(2, 11) (7, 19) (16, 43) (3, 79) (8, 107) (43, 137)

with f1(x) = 47 + 116x− 36x2 + 12x3 and f2(x) = −39 + x, i.e., m = 39 and
p = 1.

After selecting the appropriate polynomial, choices of factor bases must
also be made before the sieving step takes place. Based on the size of n,
the algebraic and rational factor bases can be generated with primes up to
the bound M = 150 using a generator written in Mathematica. As shown in
Table 7.3 and Table 7.4, the cardinalities of these factor bases are 39 and 35,
respectively. This implies that the sieving step must find at least 66 pairs
(a, b) which are smooth over A and F to make sure that the matrix equation
will give non trivial solutions.

In addition to the generation of the factor bases above, the generator is
also responsible for computing the list of natural logarithm points to initialize
the sieving array. In particular, this must be done for each value of b since it
has been decided that the line siever is to be used as the sieving technique.
As mentioned previously, the program computes this list by first finding the
critical points of the norm function. Then, it constructs the list so that the

128 Chapter 7. An empirical conclusion

Table 7.4: Rational factor base F

(r, p) (r, p) (r, p) (r, p) (r, p) (r, p) (r, p)
(1, 2) (0, 13) (8, 31) (39, 53) (39, 73) (39, 101) (39, 127)
(0, 3) (5, 17) (2, 37) (39, 59) (39, 79) (39, 103) (39, 131)
(4, 5) (1, 19) (39, 41) (39, 61) (39, 83) (39, 107) (39, 137)
(4, 7) (16, 23) (39, 43) (39, 67) (39, 89) (39, 109) (39, 139)
(6, 11) (10, 29) (39, 47) (39, 71) (39, 97) (39, 113) (39, 149)

difference in logarithm between any two continuous points is less than ln 2.
To further demonstrate this idea, Table 7.5 gives an example of the list with
b = 2 and a ranging from −50000 to 50000 for the algebraic sieve. Also, this
computation terminates the initialization phase for the main sieving step, of
which details are given in the next section.

7.2 Sieving and forming the matrix equation

The sieving part takes place by using the idea of the line sieving technique
described in §2.3 and §2.4. In particular, note that since it is possible to gen-
erate a polynomial f2(x) for the rational part, the sieve for the rational values
can be generalized as in the algebraic side. That being said, it is sufficient
to use only Algorithm 2.4.1 for both sieves and omit the implementation of
Algorithm 2.3.1. Considering the sieving region, an original attempt shows
that the sieving region A = [−50000, 50000]× [1, 200] is sufficient for finding
enough smooth pairs. This also implies that 400 samples of logarithm lists
must be given for both rational and algebraic sieve, of which an example is
presented in Table 7.5.

Technically speaking, the sieving program was implemented in C# us-
ing .NET library for Windows programming. Furthermore, the experiment
shows that the time consumption in a 1500GHz laptop was less than 4 min-
utes for this search. After the sieving part, 635 pairs were found, whereas
some of which are given in Table 7.6. In fact, only these pairs were consid-
ered for constructing the matrix equation. Additionally, note that in order
to compensate the shortcomings of Z[θ], it is necessary that a QCB is struc-
tured that adds several dimensions to each vector of the matrix equation.
For this purpose, the QCB is constructed with 20 elements, each of which is
of the form (s, q) such that q is prime, f(s) ≡ 0 (mod q), f ′(s) �≡ 0 (mod q),
and a−bs �≡ 0 (mod q) for all pairs (a, b) in Table 7.6. To satisfy the first two

Chapter 7. An empirical conclusion 129

Table 7.5: List of log points for algebraic sieve with b = 2

(a, ln N1(a, 2)) (a, lnN1(a, 2)) (a, ln N1(a, 2)) (a, ln N1(a, 2)) (a, lnN1(a, 2))
(−50000,−34.94) (−621,−21.79) (−8,−9.55) (68, 15.06) (5211, 28.16)
(−39685,−34.25) (−493,−21.1) (−6,−8.93) (85, 15.75) (6564, 28.85)
(−31498,−33.56) (−391,−20.4) (−5,−8.56) (106, 16.42) (8269, 29.54)
(−25000,−32.87) (−310,−19.71) (−4,−8.13) (133, 17.11) (10417, 30.28)
(−19843,−32.17) (−246,−19.03) (−3,−7.59) (167, 17.8) (13124, 30.93)
(−15749,−31.48) (−195,−18.34) (1, 6.66) (209, 18.48) (16534, 31.62)
(−12500,−30.79) (−155,−17.65) (3, 7.28) (262, 19.17) (20831, 32.32)
(−9921,−30.1) (−123,−16.97) (5, 7.78) (329, 19.86) (26244, 33.01)
(−7874,−29.4) (−98,−16.30) (7, 8.35) (414, 20.55) (33064, 33.70)
(−6250,−28.71) (−78,−15.64) (9, 8.92) (521, 21.24) (41657, 34.4)
(−4961,−28.02) (−62,−14.97) (11, 9.45) (655, 21.93) (50000, 34.94)
(−3938,−27.32) (−49,−14.29) (13, 9.93) (824, 22.62)
(−3126,−26.63) (−39,−13.64) (16, 10.56) (1037, 23.31)
(−2481,−25.94) (−31,−12.1) (20, 11.25) (1306, 24.01)
(−1969,−25.24) (−25,−12.4) (24, 11.82) (1644, 24.7)
(−1563,−24.55) (−20,−11.8) (29, 12.41) (2070, 25.39)
(−1241,−23.86) (−16,−11.22) (36, 13.09) (2607, 26.08)
(−985,−23.17) (−13,−10.7) (44, 13.71) (3284, 26.77)
(−782,−22.48) (−10,−10.06) (55, 14.41) (4137, 27.47)

130 Chapter 7. An empirical conclusion

Table 7.6: Found pairs smooth over A and F

(a, b) (a, b) (a, b) (a, b) (a, b) (a, b) (a, b)
(−586, 1) (8, 1) (61, 2) (88, 3) (342, 4) (73, 6) (37, 8)
(−313, 1) (9, 1) (85, 2) (94, 3) (386, 4) (133, 6) (69, 8)
(−145, 1) (16, 1) (141, 2) (−909, 4) (−67, 5) (215, 6) (109, 8)
(−94, 1) (18, 1) (171, 2) (−433, 4) (−59, 5) (1411, 6) (171, 8)
(−70, 1) (23, 1) (193, 2) (−355, 4) (−41, 5) (−88, 7) (341, 8)
(−53, 1) (125, 1) (−395, 3) (−141, 4) (−23, 5) (−46, 7) (355, 8)
(−42, 1) (145, 1) (−83, 3) (−75, 4) (−18, 5) (−2, 7) (394, 8)
(−37, 1) (−87, 2) (−55, 3) (−13, 4) (−17, 5) (11, 7) (−2347, 9)
(−27, 1) (−51, 2) (−31, 3) (−3, 4) (−8, 5) (19, 7) (−100, 9)
(−19, 1) (−29, 2) (−16, 3) (1, 4) (−1, 5) (20, 7) (−52, 9)
(−14, 1) (−25, 2) (−8, 3) (9, 4) (21, 5) (36, 7) (−40, 9)
(−13, 1) (−11, 2) (−5, 3) (15, 4) (24, 5) (47, 7) (−26, 9)
(−12, 1) (−5, 2) (2, 3) (35, 4) (58, 5) (65, 7) (−1, 9)
(−3, 1) (−3, 2) (4, 3) (41, 4) (94, 5) (96, 7) (7, 9)
(−2, 1) (3, 2) (5, 3) (47, 4) (99, 5) (146, 7) (137, 9)
(0, 1) (7, 2) (14, 3) (59, 4) (131, 5) (−83, 8) (232, 9)
(2, 1) (11, 2) (17, 3) (127, 4) (206, 5) (−11, 8) (557, 9)
(3, 1) (13, 2) (20, 3) (170, 4) (647, 5) (9, 8) (4957, 9)
(4, 1) (19, 2) (31, 3) (197, 4) (−31, 6) (23, 8) (−541, 10)
(7, 1) (41, 2) (50, 3) (282, 4) (47, 6) (27, 8) (−141, 10)

and the last conditions, we simply repeat the generator for finding algebraic
primes exceeding the bound M = 150 set in the previous section. It remains
then the test for the third condition to match until 20 of such primes are
found. As a result, Table 7.7 shows those primes that were used in testing
the squareness of the solution.

On the other hand, note that in §4.1 we observe the existence of excep-
tional prime ideals which may appear in the ideal factorization of each ideal
formed by pairs (a, b). Moreover, this is especially the case when ad > 1, and
that those ideals need also to be considered to make sure that Montgomery’s
square root is valid. In order to cope with this additional requirement, such
exceptional prime ideals must be found, after which their valuations against
each pairs (a, b) have to be computed as additional dimensions for vector
columns of the matrix equation.

Chapter 7. An empirical conclusion 131

Table 7.7: Algebraic primes in the quadratic character base

(s, q) (s, q) (s, q)
(531377465, 1072693261) (619630789, 1072693417) (354766173, 1072693541)
(738039001, 1072693289) (466592492, 1072693417) (397002423, 1072693541)
(195059167, 1072693327) (446695841, 1072693459) (769228135, 1072693571)
(348109122, 1072693339) (39570017, 1072693477) (1010915920, 1072693607)
(124071865, 1072693367) (92866501, 1072693483) (350937741, 1072693607)
(417981257, 1072693409) (12454749, 1072693493) (783533556, 1072693607)
(1059163556, 1072693417) (320924948, 1072693541)

Table 7.8: List of exceptional prime ideals

p α N(p)

2 θ̂ + θ̂2 2

3 θ̂ + θ̂2 3

3 2 + θ̂2 3

As suggested in [21, p. 8], these ideals can be computed by first construct-
ing the ring of algebraic integers O, represented in its HNF form. After that,
the Buchmann-Lenstra method can be used to decompose this maximal order
into exceptional prime ideals. While the description of finding the integral
basis for O can be seen in §4.3, [5, p. 312-322] explains how the decomposi-
tion process takes place. In this case, an implementation of Algorithm 4.3.1
in the GGNFS gives the following representative of O after continuously en-
larging the order Z[θ̂] by the list of primes {2, 3} as the square factors of
disc(T) = −14356230912:

WO =

⎛
⎝ 12 0 0

0 6 0
0 0 1

⎞
⎠ with Wd = 12

Following this result, the decomposition process appears to successfully com-
pute three distinct exceptional primes. As shown in Table 7.8, each these
ideals are represented by two elements, namely a prime p and an algebraic
integer α that it lies above, i.e., p = pO + αO [5, p. 194]. At this stage, it is
sufficient to construct the matrix equation, with 3 additional dimensions to
that in §3.3 to activate the exceptional prime ideals.

132 Chapter 7. An empirical conclusion

Table 7.9: Primes to be omitted from the matrix equation

Rational primes Algebraic primes Algebraic primes
(39, 139) (2, 2) (16, 43)
(39, 149) (2, 3) (21, 43)

(3, 3)∗ (18, 107)
(10, 13) (84, 107)
(12, 13) (16, 139)
(11, 19) (125, 139)

Table 7.10: Sample vector representative of pairs (a, b)

(a, b) {bf2(
a
b
) < 0, [vpi

(bf2(
a
b
))], [lpi

(a + bθ)], [lp|O(a + bθ)], [χqi
(a + bsi)]}

(−586, 1) {1, 00000000000000000000000000000000000, 000010000000000110
000000000000000000000, 001, 10100101100000101101}

(−313, 1) {1, 10001000000000000000000000000000000, 000000000000010000
000001000001000000000, 011, 11110100001110011000}

(−145, 1) {1, 10000000100000000000000000000000000, 000010000001000000
000000000110000000000, 011, 11001001000011101111}

Also, as a simple trick to reduce the work required for solving the matrix
equation, note that a prime 139 in F does not appear in factorizations of any
pairs (a, b) given in Table 7.6. This means that no matter which pairs are
to be chosen, the valuation of 139 in the final product will remain the same
as 0, and hence the corresponding dimension can be skipped as it does not
affect any selection. This observation also holds for the primes given in Table
7.9, which returns the total number of dimensions of the column vectors as
dim(v) = 1 + #F + #A + #Q + 3 − 14 = 84. As Table 7.10 shows, each
vector representing each pair (a, b) are reduced modulo 2 since the selection
process only considers whether an entry is odd or even.

After binary vectors for those pairs (a, b) in Table 7.6 have been formed,
they are joined together as column vectors of the matrix B. As explained
in Chapter 3, the next step invokes the Block Lanczos’s algorithm to find
a solution for the equation BX ≡ 0 (mod 2). Consequently, this process
returns 55 vectors (dependencies) as the basis for the nullspace of B over F2,

∗Note that (2, 2), (2, 3), and (3, 3) did appeared in the factorization of the pairs in Table
7.6, but since they are covered by the exceptional prime ideals, they are now cancelled.

Chapter 7. An empirical conclusion 133

Table 7.11: 28th dependency D in the nullspace of B

(a, b)e (a, b)e (a, b)e (a, b)e (a, b)e

(−94, 1)1 (7, 1)1 (−25, 2)1 (14, 3)1 (−141, 4)−1

(−53, 1)−1 (9, 1)−1 (−3, 2)−1 (17, 3)1 (1411, 6)1

(−27, 1)1 (16, 1)1 (11, 2)1 (50, 3)1

(−19, 1)−1 (−87, 2)1 (171, 2)−1 (88, 3)1

(3, 1)−1 (−51, 2)−1 (−55, 3)−1 (94, 3)−1

(4, 1)1 (−29, 2)−1 (2, 3)−1 (−433, 4)1

each of which contains a number of pairs chosen from the list in Table 7.6.

7.3 Finding possible square roots

Among 55 dependencies found from the previous step, some selections may
give trivial factors of the modulus n after the algebraic square has been
found. Thus, the square root algorithm must be applied to each dependency
until a non trivial one is found, which then triggers the termination of the
whole algorithm with a successful result. To produce the final solution for
this example, an implementation of the square root algorithm in the GGNFS
project was slightly modified so that it omits large prime variations used in
general cases. As a result, the experiment shows that the dependency given
in Table 7.11 finally returns the prime factors of 661643.

Indeed, following Algorithm 4.2.1, the first computation is to use the
greedy strategy to decide which pairs are to be pulled down to the denomina-
tor, i.e., the valuation of the square at them change from 1 to -1. As those
exponents in Table 7.11 illustrate, 12 out of 26 pairs of the dependency are
inverted to simplify the algebraic square. Then, as the algorithm turns to
finding approximation for the square root, it iteratively chooses a number
of δl that contain factors of the square root. In particular, this process is
repeated twice that produces two approximations as shown in Table 7.12.

Furthermore, as shown in the end of Algorithm 4.2.1, there still exists a
leftover square α that needs to be factored. In order to find the square root
of α, it is necessary to firstly construct its polynomial representative in θ .
This is where the Chinese Remainder Theorem comes into place as it makes
use of several primes larger than 232. Moreover, following Algorithm 4.6.1,
the residue of α at each of these primes can be computed by multiplying

134 Chapter 7. An empirical conclusion

Table 7.12: Table of approximations δl needed

sl δl HNF form of Il

1 δ1 = 10296− 3024θ + 996θ2

⎛
⎝ 804569003 240718291 172462067

0 1 0
0 0 1

⎞
⎠

-1 δ2 = 1128 + 168θ − 168θ2

⎛
⎝ 22985820 361524 7290264

0 2 0
0 0 2

⎞
⎠

Table 7.13: Inert primes with residues of α

p α (mod p)
6,000,000,007 19576 + 39552θ + 216000000000θ2

6,000,000,277 19576 + 39552θ + 648000029664θ2

6,000,000,289 19576 + 39552θ + 648000030960θ2

6,000,000,341 19576 + 39552θ + 648000036576θ2

6,000,000,511 19576 + 39552θ + 216000018144θ2

6,000,000,569 19576 + 39552θ + 648000061200θ2

together all pairs (a, b) in Table 7.11 and approximations δi in Table 7.12,
as the result is given in Table 7.13. By combining these residues together to
the larger finite field using (4.9), the actual value of α can be expressed as
follows:

α(θ) = 19576 + 39552θ − 252θ2 (7.1)

Since α �∈ Z, it is not trivial to find its square root, and hence Cipolla’s
algorithm must be applied as an alternative. Note that in this case θ̂ is used
instead of θ since f1(x) is not irreducible in Fpd and the monic version of
f1(x) must be used, that is, T1(x) = ad−1

d f1(x/ad). This would mean that
(7.1) must be turned into:

α(θ̂) = 19576 + 39552θ − 252θ2

=
1

144
(2818944 + 474624θ̂ − 252θ̂2)

=
1

4
(78304 + 13184θ̂ − 7θ̂2) (7.2)

In order to facilitate Cipolla’s algorithm, α needs to be represented with inte-
ger coefficients. This can be done by multiplying (7.2) with the denominator

Chapter 7. An empirical conclusion 135

Wd of O to eliminate the denominator 1/4. In fact, the multiplier should be
W 2

d to make sure that the square is retained. This makes a new version of α
as

γ = W 2
d α =

144

4
(78304 + 13184θ̂ − 7θ̂2) = 2818944 + 474624θ̂ − 252θ̂2

According to the description in Algorithm 4.6.2, this method starts by se-
lecting a large enough prime p ∈ Z and a random polynomial t(θ̂) ∈ Fpd such

that t2−4α(θ̂) is not a square in Fpd. As the experiment shows, the following
example gives an appropriate choice for these parameters:

p = 533928446631273161556097,

t(θ̂) = 1189641421 + 1025202362θ̂ + 1350490027θ̂2

With these initial values, the square root of γ can be retrieved using Cipolla’s
idea, as the following manipulation shows:

√
γ = x

pd+1
2 (mod (p, x2 − t(θ̂)x + α(θ̂)))

= 240− 138θ̂ + 2θ̂2

Consequently, the square root of α is computed by dividing out
√

γ by Wd,
as shown below:

√
α =

1

12
(240− 138θ̂ + 2θ̂2)

=
1

12
(240− 138(12θ) + 2(12θ)2)

= 20− 138θ + 24θ2

Thus, the square root β in (2.2) of the algebraic square formed by multiply-
ing together values in Table 7.11 can be computed as the product of those
approximations in Table 7.12 and

√
α, i.e.,

β ≡ δ1δ
−1
2

√
α (mod f)

≡ (10296− 3024θ + 996θ2)(20− 138θ + 24θ2)

1128 + 168θ − 168θ2
(mod f)

≡ 747642− 237936θ + 38328θ2

1128 + 168θ − 168θ2
(mod f)

≡ (747642− 237936θ + 38328θ2)

(
190997

212618835
− 3955θ

28349178
+

4228θ2

70872945

)
(mod f)

≡ 1381607087

1915485
− 26102477

127699
θ +

33251188

638495
θ2 (mod f)

136 Chapter 7. An empirical conclusion

Using the homomorphism φ mentioned in Proposition 2.1.1, the image of this
algebraic square root in Z can be computed as follows:

x = φ(β) ≡ 1381607087

1915485
− 26102477

127699
39 +

33251188

638495
392 (mod 661643)

≡ 137836828886

1915485
(mod 661643)

≡ 137836828886 · 243519 (mod 661643)

≡ 590918 (mod 661643)

On the other hand, based on those pairs and exponents given in Table 7.11,
the rational square root can be easily computed in the following manner:

y ≡
√ ∏

(ai,bi)∈D

(ai − bi39)ei (mod 661643)

≡
√

52 · 72 · 112 · 192 · 672 · 1032

310 · 232 · 432
(mod 661643)

≡ 51 · 71 · 111 · 191 · 671 · 1031

35 · 231 · 431
(mod 661643)

≡ 50480815

240327
(mod 661643)

≡ 50480815 · 44925 (mod 661643)

≡ 420503 (mod 661643)

Finally, the prime factors of n = 661643 can be computed using the idea of
congruence of squares described in §1.4. Indeed, as the following expressions
show, the computed primes are clearly the non trivial factors of n:

p = gcd(590918− 420503, 661643) = 541

q = gcd(590918 + 420503, 661643) = 1223

7.4 The development of integer factorization

As the previous example shows, the GNFS has been proven for its validity in
factoring integers of general forms. To conclude on behalf of this algorithm,
this final section aims at giving an overview of the current development in
the field of integer factorization, and particularly of the Number Field Sieve
methods.

As mentioned in §1.4, one of the most prominent application of integer
factorization is in cryptanalysis. In particular, it provides an ability to break

Chapter 7. An empirical conclusion 137

the main security principle of the RSA algorithm, the best known public
key encryption method. In addition, several aspects of applied mathematics
also benefit from integers that come along with their primes factors. As an
example, if prime factors of an arbitrarily composite integer n are available,
then it is simple to compute the completely multiplicative function on n, i.e.,
an arithmetic homomorphism f(x) that is defined on Z.

As for recent achievements that facilitate these applications, factoring al-
gorithms are normally divided into two categories, namely special-purpose
and general-purpose algorithms. Concerning the former type, algorithms of
this category aim at factoring integer satisfying certain conditions. As a typ-
ical example, Pollard’s ρ method described in [6, pp. 896-901] assumes that
the least prime factor of n is relatively small since its performance is strongly
dependent of this factor. Similarly, the Special Number Field Sieve (SNFS)
method behaves in the same manner as the GNFS, except that it requires
the modulus n to be of the form re ± s with relatively small r and s.

From the other perspective, general-purpose factoring algorithms possess
a major advantage over the formers as they do not apply any restriction on
the form of integers to be factored, i.e., they treat integers in a completely
general manner. As shown in Chapter 1, several representatives for this cat-
egory include the Quadratic Sieve as well as Dixon’s algorithm, of which
a number or records have been made within the past 20 years. Neverthe-
less, the fastest ever created algorithm of this kind is Shor’s algorithm [9]
that factors integers in polynomial time with complexity O((ln n)2 · ln ln n).
However, this method is subjected to operate on quantum computers which
recently are not available due to lacks of technology advances.

Considering the development of the GNFS, it is currently the fastest fac-
toring algorithm in use. In fact, the most consuming step of this algorithm is
the sieving step which attempts to find a number of pairs (a, b) whose norms
are smooth over some fixed factor bases. On the other hand, the complexity
of this step as well as the later ones mostly depends on the choice of the
polynomial f1(x) and f2(x) that are used to form the algebraic and rational
rings, respectively. Indeed, if the yields of these polynomials together are
small, it is more likely that any pair (a, b) would be smooth and hence the
sieve would be quicker in finding smooth values. Furthermore, having poly-
nomials with good size properties means that the size for each factor base
can also be reduced, thus making the matrix equation simpler as it contains
fewer dimensions, though the improvement may not be very significant. Fi-

138 Chapter 7. An empirical conclusion

nally, minor affects can also be found in the square root process as smaller
coefficients and factor bases are considered by the computation.

Following this observation, further development to the GNFS will most
likely concentrate on improving the polynomial selection process. This how-
ever does not mean that there is no place for innovating other parts such as
sieving methods or solving matrix equation, which in practice still remain
as major questions. In any case, the overall aim of this thesis is no more
than to provide a compact documentation with elementary explanations on
the recent development of the GNFS, as well as several other mathematical
techniques that make it feasible in practice. Within this knowledge scope, it
is hoped that this thesis contributes to inspiring mathematical and computer
science communities to further improvements of factorization techniques in
general, and of the GNFS specifically.

Bibliography

[1] Allenby R.B.J.T. Rings, Fields and Groups - An introduction to Abstract
Algebra. Hodder Headline Group, London, second edition, 1991.

[2] Bach E. and Peralta R. Asymptotic semismoothness probabilities. Math-
ematics of Computation, 65(216):1701–1715, 1996. citeseer.ist.psu.
edu/bach96asymptotic.html. Accessed: April 25, 2008.

[3] Bach E. and Shallit J. Algorithmic number theory, Volume 1: Efficient
algorithms. MIT Press, Cambridge, Massachusets, 1996.

[4] Briggs M.E. An introduction to the general number field sieve.
Master’s thesis, Virginia Polytechnic Institute and State Univer-
sity, April 1998. http://scholar.lib.vt.edu/theses/available/

etd-32298-93111/unrestricted/etd.pdf. Accessed: April 25, 2008.

[5] Cohen H. A Course in Computational Algebraic Number Theory.
Springer-Verlag, Berlin, third edition, 1996.

[6] Cormen T.H., Leiserson C.E., Rivest R.L., and Stein C. Introduction to
algorithms. The MIT press, Cambridge, Massachusetts, second edition,
2001.

[7] Couveignes J. Computing a square root for the number field sieve.
In Lenstra A. K. and Lenstra, Jr. H. W., editors, The development
of the number field sieve, number 1554, pages 95–102. Springer-Verlag,
1993. http://citeseer.ist.psu.edu/256874.html. Accessed: April
25, 2008.

[8] Dickman K. On the frequency of numbers containing prime factors of a
certain relative magnitude. Astronomi oc Fysik, Arkiv for Mathematik,
22A:1–14, 1930.

[9] Hayward M. Quantum computing and shor’s algorithm. Feb 2005. http:
//alumni.imsa.edu/~matth/quant/299/paper.pdf. Accessed: April
25, 2008.

139

140 Bibliography

[10] Janeba M. Factoring challenge conquered - with a little help from
williamete, 1994. http://www.willamette.edu/~mjaneba/rsa129.

html. Accessed: April 25, 2008.

[11] Keranen V. Mathematica in word pattern avoidance research.
Computer Algebra and Differential Equations, 67(3):12–27, 2007.
https://oa.doria.fi/bitstream/handle/10024/36060/CADE_2007.

pdf?sequence=1. Accessed: April 25, 2008.

[12] Kleinjung T. On polynomial selection for the general number field sieve.
volume 75. American Mathematical Society, October 2006.

[13] Kocher P.C. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. Lecture Notes in Computer Science, 1109:104–
113, 1996. http://citeseer.ist.psu.edu/kocher96timing.html.
Accessed: April 25, 2008.

[14] Lenstra A.K. and (Eds) H.W.Jr. Lenstra. The development of the num-
ber field sieve. Lecture Notes in Mathematics, 1554, 1993.

[15] Lidl R. and Niederreiter H. Introduction to finite fields and their appli-
cations. Cambridge University Press, Cambridge, revised edition, 1994.

[16] Menezes A.J., Oorschot van P.C., and Vanstone S.A.

[17] Montgomery P.L. Square roots of products of algebraic numbers. June
1995. ftp://ftp.cwi.nl/pub/pmontgom/sqrt.ps.gz. Accessed: April
25, 2008.

[18] Montgomery P.L. A block lanczos algorithm for finding depen-
dencies over gf(2). Lecture Notes in Mathematics, 1998. http:

//www.mathmagic.cn/Crypt1981-1997/HTML/PDF/E95/106.PDF. Ac-
cessed: April 25, 2008.

[19] MS A. Public key cryptography - applications algorithms
and mathematical explanations. InfoSec Writers, 2007.
http://www.infosecwriters.com/text_resources/pdf/Public_

Key_Cryptography_AMS.pdf. Accessed: April 25, 2008.

[20] Murphy B. Polynomial selection for the number field sieve integer
factorisation algorithm. PhD thesis, Australian National University,
July 1999. http://citeseer.ist.psu.edu/murphy99polynomial.

html. Accessed: April 25, 2008.

Bibliography 141

[21] Nguyen P. A Montgomery-like square root for the number field
sieve. Lecture Notes in Computer Science, 1423:151–168, 1998. http:

//citeseer.ist.psu.edu/nguyen98montgomerylike.html. Accessed:
April 25, 2008.

[22] Nguyen P. and Stehle D. An LLL algorithm with quadratic complexity.
Lecture notes in Computer Sciences, October 2007.

[23] Norton K.K. Numbers with small prime factors, and the least k-th power
non-residue. American Mathematical Society, Providence, Rhode Island,
1971.

[24] Peterson M. Parallel block lanczos for solving large binary sys-
tems, 2006. http://dspace.lib.ttu.edu/bitstream/2346/1169/1/

Peterson_Michael_Thesis.pdf. Accessed: April 25, 2008.

[25] Raman R., Livny M., and Solomon M. Matchmaking: Distributed
resource management for high throughput computing. Proceedings
of the Seventh IEEE International Symposium on High Performance
Distributed Computing, 1998. http://www.cs.wisc.edu/condor/doc/
hpdc98.ps. Accessed: April 25, 2008.

[26] Rotman J.J. A first course in Abstract algebra with applications. Upper
Saddle River, New Jersey 07458, third edition, 2006.

[27] RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard, June
2002. ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.

pdf. Accessed: April 25, 2008.

[28] Scheneier B. Applied Cryptography. John Wiley & Sons, Inc., New York,
second edition, 1996.

[29] Shor P.W. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM Journal on Computing,
26(5):1484–1509, 1997. http://citeseer.ist.psu.edu/25085.html.
Accessed: April 25, 2008.

[30] Stewart I.N. and Tall D.O. Algebraic Number Theory. Chapman &
Hall/CRC, second edition, 1987.

[31] Tannenbaum T., Wright D., Miller K., and Livny M. Condor – a dis-
tributed job scheduler. In Sterling Thomas, editor, Beowulf Cluster
Computing with Linux. MIT Press, October 2001. http://www.cs.

wisc.edu/condor/doc/beowulf-chapter-rev1.pdf. Accessed: April
25, 2008.

142 Bibliography

[32] Tattersall J.J. Elementary Number Theory in Nine Chapters. Cambridge
University Press, New York, 1999.

[33] Trefethen L.N. and Bau D. Numerical Linear Algebra. Society for In-
dustrial and Applied Mathematics, 3600 University City Science Center,
Philadelphia, PA 19104-2688, 1997.

[34] Weisstein E.W. Rsa-640 factored, November 2005. http://mathworld.
wolfram.com/news/2005-11-08/rsa-640/. Accessed: April 25, 2008.

ISSN: 1239-7733
ISBN: 978-952-5153-77-4 (nid.)
ISBN: 978-952-5153-78-1 (PDF)

g

	Integer Factorization with the Genral Number Field Sieve
	Abstract

	Contents

	List of Tables

	Foreword

	Chapter 1 Introduction to integer factorization

	Chapter 2 Sieving in the General Number Field
 Sieve
	Chapter 3 Computing perfect squares with matrix equations

	Chapter 4 Extracting square roots in Z

	Chapter 5 Completing the sieving part

	Chapter 6 The GRID environment

	Chapter 7 An empirical conclusion

	Bibliography

